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choice function«. A lytttm, called STEPPS, ha« be.n bum m wnicr. n mnm «n uo 
described and evaluation tool» can b« u$ed to manipulata and act upon a model to 
predict performance of a program decomposition. 

The design approach is to describe a multiprocessing program in terms of the modeling 
system. The model is examined to determine some analytic attributes of the model. 
The analysis available determines (a) whether the model is well formed, (b) whether 
the model contains deadlocks, (c) predictions of steady state properties of each 
process. In addition, without much difficulty, Analysis functions external to STEPPS 
rr^y be included as needed by a program designer. 

Some analyses, that may be interesting, may be difficult to determine without resorting 
to simulation. Therefor« the STEPPS system includes a model s.mulator with data 
collection facilities. The STEPPS data collection facilities include «^h measures «s wail 
times and queue lengths. As in the case of analysis functions. STEPPS allows the 
inclusion of data collection facilities not originally provided by STEPPS. 

As a system is designed, alternate models can be examineds and based on an individual 
designerVchoice of performance attributes, a model can be chosen on which to base 
the construction of a multiprocessor program. As more is learned about I .e real 
system parameters, the model can be tuned to more closely predict ultimate system 

performance. 

Several examples of communicating processes are modeled using STEPPS including 
pipeline processes, probabilistic processes. P/V synchronization and 't«der/wrl£r 
synchronization. Two experiments are presented as validat.on of the usefulness of the 
STEPPS tools In the Bliss/11 experiment, tK, implications of restricting the numbers 
of available processors and using different scheduling algorithms were examined, and 
tho effect of using alternate p-ogram structures was explored. In the Hearsay II 
experiment it was shown that, wiien a multiprocess program under development is 
sufficiently instrumented, the STEPPS model and system can be used to help tune the 

program's structure. 

The use of the tools for predicting the performance of a multiprocessing program falls 
between purely analytic models, twch fcs queueing theory or P«t"-nels, and system 
simulations built in a general purpose simulation language. The STEPPS system is 
presented as a new approach to designing multiprocessing programs. 
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Abstract 

An approach to designing programs for irt.Dlementation in a multiple instruction stream- 
multiple data stream processing environment is presented. A program is modeled as a 
directed gr iph consifting of two types of nodes: processing nodes and linking nodes. 
Communication among nodes in the mode! is represented by message tokens. Each 
processing node is similar in form to a semi-Markov process. A simulation of the 
operation af the model is nondetermirtistic, but is based on prescribed probabilistic 
choice functions. A system, called STEPPS, has been built in which a model can be 
described and evaluation tools can be used to manipulate and act upon a model to 
predict performance of a program decomposition. 

. The design approach is to describe a multiprocessing program in terms of the modeling 
system. The model is examined to determine some analytic attributes of the model. 
The analysis available determines (a) whether the model is well formed, (b) whether 
the model contains deadlocks, (c) predictions of steady state properties of each 
process. In addition, without much difficulty, analysis functions external to STEPHW 

may be included as needed by a program designer. 

Some analyses, that may be interesting, may be difficult to determine without resorting 
to simulation. Therefore the STEPPS system includes a model simulator with data 
collection facilities. The STEPPS data collection facilities include such measures as wait 
times and queue lengths. As in the case of analysis functions, STEPPS allows the 
inclusion of data collection facilities not originally provided by STEPPS. 

As a system is designed, alternate models can be examined; and based on an individual 
designer's choice of performance attributes, a model can be chosen on which to base 
the construction of a multiprocessor program. As more Is learned about the reel 
system parameters, the model can be tuned to more closely predict ultimate system 
performance. 

Several examples of communicating processes are modeled using STEPPS including 
pipeline processes, probabilistic processes, P/V synchronization, and reader/writer 
synchronization. Two experiments are presented as validation of the usefulness of the 
STEPPS tools. In the Bliss/11 experiment, the implications of restricting the numbers 
of available processors and using different scheduling algorithms were examined, and 
the effect of using alternate program structures WM explored. In the Hearsay II 
experiment it was shown that, when a multiprocess program under development Is 
sufficiently instrumented, the STEPPS model and system can be used to help tune the 
program's structure. 

The use of the tools for predicting the performance of a multiprocessing program falls 
between purely analytic models, such as queueing theory or Petri-nets, and system 
simulations built in a general purpose simulation language. The STEPPS system Is 
presented as a new approach to designing multiprocessing programs. 
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Chapter I 

Problem Statement, History and Goals 

I.A. Introduction 

This research develops both a methodology for enhancing the design of 

programs to be composed of concurrently executable subparts and a set of tools to 

support that methodology. The execution environment which we shall be concerned 

with consists of several processing units operating under the control of separate 

instruction streams. Intuitively, when parts of a program are processed in such an 

environment, the real time required to execute the program should decrease . For 

this reason, as uell as others, much current research effort addresses program 

structure for jus. such a multiprocessing envirsnment. This thesis addresses the 

problem of decomposing programs for concurrent execution in such a way that the 

decompositions are efficient with respect to certain specifiable criteria. The approach 

is to provide a set of tools with which a system designer can manipulate and analyze a 

program model created to predict the performance of a system designed for a multiple 

asynchronous instruction stream environment. The tools are applicable to both the 

early design of a program and later tuning of a program under construction. 

^"Real time" is the time elapsed between tho start of computation and the time the 
final result is available. It is different from the total processing time since operations 
may be performed concurrently. 

*This does not always occur. Graham [Graham 72] has shown that adding more 
processors can increase real time due to scheduling anomalies. 
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There ore several reasons why many researchers are considering 

multiprocessing and problem restructuring in favor of merely building fester computer 

hardware without explicit concurrency. First, certain problem« overwhelm current end 

projected technology when programmed for single instruction stream computers. An 

example is the problem of weather forecasting for any single place on the earth. At 

present, this problem can not b^ solved with enough lead time to make the forecast 

useful. Another large problem is fast-response scheduling, cost accounting, and 

resource management for large corporations. In this problem the mathematical 

computations are not necessarily as complex as those for weather forecasting, but the 

amount of data processing required can be extremely large and, as for weather 

prediction, there is a time constraint on the answers. For each of these problems, a 

solution might be attainable in a reasonable perioo of time if some of the computations 

could be distributed and executed in parallel. Among the unknown factors are how the 

problems should be decomposed for distributed processing and what communication 

constraints and processing attributes elicit favorable computational attributes (such as 

real time speed and low cost). 

There may also be economic incentives to implement a program in a 

multiprocessing environment. For example, it may be less expensive to Implement a 

speech understanding system on a set of minicomputers than on one fast and relatively 

complex uniprocessing computer.  The price benefits may occur because of 

1. the  use of  so  called off-the-thelf equipment  making  total processing 
power cheaper than large uniprocessing machines, and 

2. economies of scale in manufacturing. 

Perhaps the most compelling reason (possibly a consequence of the first two) 

for wanting to decompose programs for multiprocessing environments is that such 
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environments are now available and it is important to use the") properly. C.mmp [Wulf 

72b], L1BN Pluribus IMP [Heart 73], U.a Burroughs D825 [Anderson 62], UC Berkeley's 

Prime [Quatse 72], and UC Irvine's DCS [Färber 75] all have some multiprocessing 

capabilities. Additionally Clark's macronodules [Clark 72], Bell's register transfer 

modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller end 

Siewiorek [Fuller 73], and others offer multiprocessing on a very low level. 

There are, at present, no guidelines for decomposing a problem for 

multiprocessing execution [Newell 75]. A number of questions related to tht discovery 

of such guidelines have bsen investigated.  These include. 

1. Can a problem be decomposed for solution in a multiprocessing 
environment? [Karp 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65, 
Ros'infeld 69] 

2. How can the algorithmic structure of a multiprocessing task be 
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b, 
Karp 69, Lesser 72, Miller 73, Noe 73] 

3. Will the same results always occur, namely will a multiprocessing system 
be deterministic? Can a multiprocessing system be proven correct? Are 
there potential deadlocks and unattainable states? This is somewhat 
analogous to discovering infinite loops and impossible conditions in ■ 
sequential program.  [Karp 69, Keller 73a, 73b, Riddle 72] 

4. When are two computations the same?  [Karp 69, Keller 73a, 73b] 

5. What measures are interesting about the computation? Some may be: 
speed, redundancy, (inefficiency, resource utilization, and economies of 
the components.  [Browne 73, Lehman 66] 

6. How can the system be scheduled when there are scarce resources? 
[Adam 72, Graham 72] 

7. How can bottlenecks be identified and their effects lessened or ciimmated? 
[Courtois 72, Dijkstra 74, Rice 73] 

8. What are the effects of restructuring the communications among the 
cooperating processes? [Balzer 71, Horning 73] 

9. What style of decomposition and machine structure would i st suit .. 
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC, 
Cmmp, etc.)?  [Flynn 66] 
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The last question points out that there are several styles of multiprocessing. 

Flynn [Flynn 66] described processing organization in four ways: 

single instruction stream - single data stream(SISD), 

single instruction stream - multiple data streams (SIMD), 

multiple instruction streams - single data stream (MI5D), and * 

multiple instruction streams - multiple data streams (M1MD). 

These computing styles may be used to describe an entire computing 

environment and affect a problem's decomposition and algorithms. However those 

systems that do not allow a programmer to program explicitly for multiple streams of 

data or instructions will be considered as single stream machines. For example, any 

multiprogramming machine performs some operations concurrently (e.g. I/O), but a 

programmer is usually uruble to control this concurrency. In an array or associative 

processor a control unit specifies which operation is performed simultaneously on 

many data items simultaneously -- these are SIMD machines. The current pipeline 

machines (CDC STAR-100, TI ASC) perform parts of single operations on several pieces 

of data. The programmer has no control over which operations are performed 

concurrently, so these are also single instruction stream machines . Even in multiple 

instruction stream processing there can still be a spectrum of communication schemes. 

Networks of computers and multiprocessing computers with common memory are are 

defined to be multiple instruction stream machines only when a programmer can 

specify concurrent operations and these operations can be performed concurrently. 

A multiple instruction stream program is defined to be a program in which two 

subparts of the program can be specified to execute concurrently.   Since these are 

A pipeline machine has multiple data streams as far as a programmer is concerned, 
but actually the stream of data comes into the pipe sequentially. 
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•ubpart. of . tot.1 th.r. is some rd.tionship between them.  The relationship must be 

in the form of some common data communication and/or sharinß.  If the subparta are 

nemed A and B then at least one of the following must occur: data progress from A to 

B. from B to A. from some C to A and B. or from A and B to some C. (Figure 1-1 shows 

the possible relationships between two processes in a direct graph notation) When 

deta progress from one program to another it means that the second program usec 

some  resuits of the first in its computations.   Of course, other  processing may 

manipulate the data between the processing of two subprograms and additional data 

may be provided to the second program from sources other than the first program 

(and the first program can provide data to other programs). 

Figure I-1. Possible relationships between two processes, A and B 

If A and B are related, one of these relationships must hold; otherwise A and B 

' would be unrelated and thus not subparts of the same program. In the first and 

second cases one subprogram sends data to the other and continues to process after 

sending data to the second subprogram. In the third case, data can progress to both A 

end B from a common source and all three can be processed at the same time. In the 

lest case, A and B can be processed simultaneously and each is able to send data to 

the same third process, C. 

.   -..• 
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I.B   Direction of this work 

IB. Direction of this work 

At present there are no proven guidelines on how to structure a problem for 

implementation in a multiple-instruction-stream multiprocessinp environment.   Rather 

than address Jhe guidelines problem directly, this work presents a design environment, 

a set  of evaluation tools, and a design approach whereby a system designer can 

explore attributes of alternative program decompositions.   A major premise for this 

research !« that the communication pattern among concurrent processes is critical to a 

system's performance.   The goal is to identify issues end to make predictions which 

will provide some practical information to the system designer at an early stage and 

also during later program tuning.   This research has been directed towards solving a 

more specific set of problems than those presented in the previous list, namely: 

1.     How can interactions among the concurrent computations be modeled? 

2 Are the interactions safe, i.e. deadlock free? For example, can one show 
that a program never arrives at a state in which one process is trying to 
communicate with a second process while the second is waiting to send a 
communication to the first process? 

3. When the structure is not deadlock free, whet is the probability of a 

deadlock? 

4. Where will most of the process and communication activity occur? 

5 Where »tlenecks occur, and how may they be relieved? For 
examp introduction of buffers or additional processes help? 

6 Are ther« working sets of processes? If certain subsets of processes 
tend to be active at different times then fewer processors will be 
required for a program (and consequently less parallelism can be 

attained). 

7. What are the effects of restricting the number of processors? What are 
the effects of alternative scheduling algorithms? 

These questions were chosen because they may present hidden problems to 

 ._ 
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the system designer.   Inexpensive and fast approximate answers to these questions 

should be useful when a program is being designed and also when It is being tuned to 

Improve a program's performance. 

Currently there are no generally accepted languages or graphical techniques 

for representing or modeling a multiprocessing computation and the communication 

interactions among processes. Thus problems that might be prevented by a clear 

elgorithmic description technique may still occur. However a system designer has some 

understanding of the relationships among the parts of his system. He can implement 

the subparts in many different languages, but it is the interfaces between the subparts 

that are usually not we'! described. Parnas [Parnas 71] has suggested communication 

schema to be used while creating communicating modules, but has not described how 

' to represent the communications in an entire system. This lacK of global view may 

prevent the recognition of potential problems. This, then, illustrates the importance of 

discovering a method for the automatic detection of deadlocked structures and 

potential deadlocked structures. If the system designer can easily identify in advance 

where he may have made such an error, then he is spared the task of finding the 

problem later. It would be preferable to prevent such problems, since many of the 

criteria for preventing deadlocks are known; however, in complex systems it is 

increasingly difficult to be aware of all potential deadlock conditions. 

If the system designer is able to estimate which particular subparts of his 

system will contain the largest amount of activity, then these suhparts will be the most 

appropriate places to expend effort to improve performance. 

The ability to compare the potential performance of alternate systems easily is 

extremely  important.   Almost  all disciplines concerned with the creation of large 
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interacting subsystems use the technique of moiling the behavior of the whole 

system and extrapolating the performance of this model to deduce properties of the 

large system. Examples of this technique range from the use of wind tunnels and 

analog simulation of fluid flow to discrete computer simulations of supermarket check- 

out counters. A tool for the prediction of computer system decomposition performance 

should be just as useful. An important aspect of a design system is how easily the 

designer can alter the attributes of his system and determine the effects of those 

changes. 

We feel that important assets of design tools are that they: 

1. be easy to use, 

2. provide results quickly, 

3. be interactive (when using a computer system), and 

4. make it easy to perform design iterations. 

I.C. Other work bearing on the problem 

Several kinds of tools are available to a system designer. These tools include 

graph models, queueing theory models, simulation languages, programming languages 

and theories of design of complex systems. Each of these tools can be useful at some 

time during the design and construction of a multiprocessing program. Graph models 

are usually used to represent multiprocessing computations and for analysis of control 

/low within a program. Queueing theory is used to predict and study performance of 

simplified models of complex processes. Simulation is an approach to modeling more 

complex systems to obtain similar performance predictions.   Programming languages 

Ifc^ '■•■^^.<^*^:^^.. .A.. ..^.to.WA^^.—    
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•re tools for explicitly representing multiprocess algorithms. They also may contain 

primitive operators that can facilitate proofs of properties of programs. Design 

theories, such as that of Parnas, provide techniques that facilitate construction of 

complex systems and their understanding. No one tool is comprehensive enough to use 

as a quickly obtained predictor of the performance of a multiprocess program. 

With sufficient instrumentation the behavior of a multiprocess program can be 

measured. These data can be used in several ways to predict behavior changes when 

some system parameters and structures are modified. Again queueing theory and 

simulation techniques are useful tools for these predictions. As before neither method 

necessarily provides fast predictions of the sensitivity of performance to changes in 

program parameter and structure. 

The following are brief presentations of some tools thst bear a relationship to 

those that will be presented later. It will be seen that the purely analytic techniques 

are often too restrictive on assumptions, not useful for overall program design, and of 

limited applicability due to computational complexity. The simulation techniques require 

too much effort both to construct a simulation and to modify it to achieve results 

concerning alternate program decompositions. 

I.C.I. Petri nets 

After the original formulation of Petri nets [Petri 62] several MIT researchers 

[Dennis 70, Holt 70, Paterson 70, Rodriguez 67] refined forms of the original model as 

useful tools for studying concurrent processes. A Petri net looks like a directed graph 

in which marks or tokens are placed on some of the arcs. (Only connected graphs are 

of interest.) These tokens move about the graph to represent flow of control.  When 
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toKens are present on all of the input arcs to a node, that node is able to "fire." After 

a node fires, one toKen is removed from each input nr« and a token is placed on each 

output arc of that node. In fact, a Petri net is not a directed graph [Berge 62] 

because it is possible for one ire to port to or come from more than one node. A 

restricted Petri net called a marked graph [Holt 70] permits arc Initiation and 

termination only at single nodes (not necessarily the same). Multiple arcs can still be 

connected to each node. In contrast, a restricted Petri net becomas a finite state 

automaton (state transition diagram [Holt 70]) by only permiting one arc to enter each 

node and one arc to ieava each node. (Arcs can have muitiplr starting points and 

terminal points.) In Figures 1-2, 1-3, and 1-4 the nodes are represented by straight 

lines and the arcs are arrows with a circle that can contain the tokens (represented by 

dots). 

r*G>- x> o 
<H, 

O 

■o—1 

Oi 

Figure 1-2. A Marked graph 

"TT 

Figure 1-3. A finite state atomaton. 

 ,  . . . 
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ten o 

Figure 1-4. A Petri net that Is neither a marked graph nor a finite state 
atomaton. 

Marked graphs are the only form of Petri nets that have been used to study 

concurrent processes. The general Petri net can be too complex and the state 

transition diagram can not be used to model concurrent processing. Marked graphs 

are used by modeling the potential flow of control in a system and then analyzing 

possible markings in order to make predictions about future markings. Issues 

investigated, for a particular inital marking, include: 

1. Determine whether nodes will eventually activate (fire). In Petri net 
terminology the question is whether a node is "safe" [Holt 70]. If all 
nodes are safe the net is "safe," i.e. all nodes can be activated. 

2. Count the number of activations of a node. The important counts are 0, n, 
and infinity. 

3. Determine whether the initial marking can lead to another particular 
marking. 

4     Identify nodes that can fire concurrently. 

There are several difficulties in using Petri nets. One is that interesting 

examples require a large number of nodes [Dennis 70, Merlin 75]. There are so many 

nodes that it is difficult to do any analysis. In addition, none of the analysis is 

mechanical. Another difficulty is that control flow in the graphs is completely 

determined with no accounting for rates of processing at each node. 



'.C.2. Th« UCLA mod«! 

The original goal of the UCLA model was to "represent programs to be run on 

variable structure computers" [Baer 73, Estrin 63]. Thus Its purpose was to help 

describe concurrent comput-lions rather than to study the performance of algorithms. 

However some extensions of, and associated restrictions on, the original model allow 

for performance predictions in some restricted cases to determine the termination of 

loops, the determinacy of representations [Regis 72], and the reduction of graphical 

forms [Bovet 69]. In addition the UCLA model has been used to study the automatic 

conversion of r'ORTRAN-like programs to a parallel computation form. 

The basic form of the model is a directed binary graph. Most studies using this 

model use an acyclic structure. The graph shows processing dependencies and, as 

long as an acyclic model is used, potentially concurrent operations can b- easily 

identified. Each node may have at most two entry arcs and also at most two exit a. cf. 

The rules for firing a node are defined as part of the node. The node's firing rule 

depends on the enabling of the input arcs and the node's result rule cause some of its 

output arcs to be enabled. A node will not fire if any of its output arcs are already 

enabled.  Once a node fires the input arcs causing that node to fire are disabled.  (See 

Figure 1-5) 

In the UCLA model, branching and merging control flow are modeled with EOR 

type nodes.  Concurrency is modeled by the use of AND type nodes. 

Further restrictions are placed on the form of the UCLA graph model. There 

must be a unique initial vertex (only output arcs) and a unique terminal vertex (only 

input arcs). Another restriction is that all subgraphs must be AND type. This means 

that if a choice is made at an EOR output node then it must still be possible for the 

 ._. . . 
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AND input node 

AND input type fires only if both Input arcs have been enabled. 

EOR input node 

EOR input type fires only if exactly one of the input arcs has been enabled, 

AND output node 

AND output type enables both of the node's output arcs after the node has fired. 

EOR output node 

EOR output type enables exactly one of the node's output arcs after a node has fired 
(which one is undetermined). 

Figure 1-5. UCLA Model Nodes. 

terminal node to fire. In addition it should not be possible for both arcs of an EOR 

input node to be enabled at once. The question of determinacy of a graph is 

subsumed by the question of legal graphs. Legal graphs are those that start at the 

Initial node and are guaranteed to terminate at the terminal node.   When loops are 
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allowed, any loop must be able to terminate. Most who have used the model have 

assumed acyclic structures in order to guarantee loop termination (naturally, no loops). 

The analytic technique used to ignore loops is to expand all loops by some finite 

repetition.  Thti repetition factor is determined by a probabilistic argument [Martin 67]. 

The question of mean path length in a directed acyclic binary graph has been 

studied at UCLA. Probabilities are assigned to each arc and computation times are 

assigned to each node. These are used to determine the probability of traversing 

paths through a legal graph and to estimate the mean path time of a graph [Martin 69]. 

One may also determine the maximum number of processors required by the graph 

[Baer 69] under the same restrictions. 

The difficulties with using the UCLA model also involve the need for a large 

m-mber of nodes to represent interesting structures. This is particularly true since 

aach node has at most two input arcs znd at most two output arcs. Another problem is 

that most results have been dependent on acyclic models. Thus the mechanical 

techniques for proving legal graphs, etc. are only applicable to a restricted set of 

programs representable by the model. 

I.C.3. An algebraic model of interprocess communication 

In his dissertation [Riddle 72], Riddle presented a methodology for modeling 

and analyzing supervisory systems, but the work can be applied to the problem of 

analyzing any complex asynchronous system. He found the same difficulties with Petri 

nets and other models as those reported in earlier sections of this chapter. 

Riddle presented an explicit program-like description of the operation of a 

process.   This description was only concerned with the interprocess communication 

itwrrh1ii#i^^^'^v^^':^',^t':-'-^"J'-1-"^ ^f:h'Jk^ f.^^.lir..    i    . .^...... ,.... ... .....    ...     .  _   
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relationships of each process. However the description was close enough to being a 

program that each process required information concerning the type of interprocess 

messages.  Therefore the descriptions of processes were themselves fairly complex. 

The model was also based on a directed graph structure representing 

interprocess communication. A graph consisted of two types of nodes, process nodes 

and link nodes. The link nodes had properties that could require a certain amount of 

computation associated with them, e.g. queueing disciplines. 

One of the goals of Riddle's research was the development of an algebra to 

descr ibe interprocess communication. Algebraic expressions could be used to describe 

possible communication paths in a model. By using the graphical structure, the 

program-like descriptions, and the algebraic expressions, theorems were developed to 

analyze the behavior of a modeled syst« m. The creation of all algebraic expressions is 

performed by the inspection of a graph. The proof of theorems concerning the 

behavior of a system, as described by the algebra, is not a mechanical process. Riddle 

did provide a set of theorems that can be used in a proof. 

The examples that Riddle studied were based on communication paths of a 

given system. He determined what termination and deadlock meant for that system and 

was able to derive proofs showing that the system terminated and contained no 

deadlocks. The questions he posed were specific to the system being modeled and 

required the creation of algebraic expressions vor each question concerning system 

behavior. These algebraic expressions were not necessarily easy to create and the 

proofs of theorems were not very easy to construct. 

The tools  that Riddle's research provides may be used for the design of 

multiprocessing programs.  The drawbacks to his approach are the difficulty and effort 

 .   .   .   , . .--.*— - ■ 
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required to create the algebraic expressions needed to represent a model, and the 

expressions representing communication within a model. The expression proof process 

is also fairly tedious. 

I.D. The STEPPS System 

All of the models discussed in the previous section are tools for the analysis of 

multiprocess programs. A common drawback of each model is that results must be 

obtained through detailed, non-mechanical analysis. A second drawback is that none 

contains the processing rates of the various processes of a multiprocess program as 

part of the model. The speed and ease of obtaining results and the ability to include 

expected timing of attributes of a program can be especially useful when making early 

design decisions concerning the structure of a program. 

The design methodology presented in this thesis is based on an inU ractive 

system utilizing a particular model of multiple instruction stream problem 

decomposition. The system and the model are called STEPPS (Some Tools for 

Evaluating Parallel Processing Systems). The methodology of designing a programming 

system has become an interesting and important question in the last few years [Brinch 

Hansen 74, Dahl 72, Mills 71, Parnas 72, Parnas 75, Weinberg 71]. The author 

subscribes to the "top down" approach to system design [S;mon 62]. Thus a "natural" 

approach to building a system that will contain potentially concurrently executing 

subparts is to decompose a system into functionally independent subparts and 

describe the communication structure among the subparts before explicitly defining the 

operation of the subparts.  For example, when designing a compiler one might say that 
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the LEXICAL-ANALYSER and the SYNTAX-ANALYSER could process in a pipeline manner 

with the LEXICAL-ANALYSER sending results to the SYNTAX-ANALYSER. A convenient 

notation is a directed graph notation with the restriction that the connections between 

two processes must go through an explicitly designated (and named) connecting LINK 

(see Figure 1-6). At this stage of decomposition only potential communication is 

important and data dependent communication (i.e. decisions based upon data) is not 

considered at all. 

LEXICAL-ANALYSER s. SYNTAX ANALYSER 

LI 

Figure 1-6. Pipeline. 

Each of the previously discussed models considers interprocess communication 

patterns to be impcrtant for understanding the performance of multiprocess programs. 

Both the Petri-net and the UCLM model represent interprocess communication by 

means of the movement of untyped toKens. Queueing models of multiple processes 

a'^o use typeiess tokens to represent flow of control. Riddle was able to simplify 

iome interprocess connecticns in his model schema and to enhance analysis by 

introducing type identification for tokens. 

The STEPPS model uses typeiess tokens to represent flow among processes. 

The study of interprocess communication suggesfs several measures of multiprocess 

performance such as queue lengths, deadlocking, and potential concurrency. A 

difference between this model and the earlier models is that a STEPPS process must 

be ready for a message before "firing" (due to the arrival of a message) instead of Its 
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firing being dependent on logical relations of the messages available on paths to it. 

I.O.I. The STEPPS model:  an informal description 

The STEPPS model includes both probabilistic and timing expectations for 

describing individual process activity. Whereas a standard probabilistic model, i.e. 

Poisson; treats processes as operating on messages, the STEPPS model process 

includes a natural relationship between a process' input/output activities. In addition, 

the introduction of time parameters allows for better estimation of a program's 

operational concurrency instead of potential concurrency. The model represents 

multiprocessing at the message communication level and is not intended to represent 

other multiprocessing problems such as memory interference and specific programming 

techniques. 

Concurrency can be modeled by having a single process send data to more 

than one other process. Data streams are explicitly merged when a process receives 

data from more than one other process. In the descriptions of processes, more than 

one arrow may leave a process node or enter a process node. If a process node is 

able to receive data from any of several processes, but the receiving process does not 

care which process sent the data, several arrows enter a linKnode and only one leaves 

it. If one of several processes may operate on data produced by another process this 

is represented by more than one arrow emanating from a linKnoo» and going to the 

separate process nodes. 

+In Riddle's model a process must be explicitly programmed to accept a message. 

k^.Hftü 
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Example I.D-1 

Consider the problem of building an online university registration 
system. This system would handle all of the scheduling and student 
record Keeping for a university. One might decompose the problem Into 
the graph of Figure 1-7. Students* requests are handled either by a 
Schedule Requester or Schedule Updater, each of which processes the 
request and sends data to a Scheduler. The Scheduler sends data to 
the Data Base and then sends results to a Schedule Output process. 
Requests to the system may also come from the Registrar. These 
requests may also go to the Data Base and on return data is sent to the 
Registrar Output by She Transcript request process. There also may be 
requests for grades. The data base may access data in either the 
Current Semester or its Archives. 

All data travels through paths between nodes (the LINKS and the 

PROCESSES) in units called messages and all queueing of messages occurs at each 

LINK. Requests for data from a LINK are handled in a FIFO (First In, First Out) manner 

by the LINK. The next step is to describe the action of a PROCESS node. Since only 

the communication paths are important at this point of design, only the message 

handling properties of a process are described. The source of data is not identifiable, 

to a process neither Knows which process sent the data to the LINK attached to any of 

its "input ports" nor does it Know which processes are attached to the LINK that is 

attached to any of its "output ports." The reason for this restriction is that messages 

contain no information such as sender or receiver identity. This will be shown not to 

cause difficulty in using the model. 

The execution sequence of a process is: 

1. perform an input or output operation, 

2. choose which input or output port will be active next, 

3. compute for some time, and 

4. repeat 1 to 4. 

A 
♦• -OP"*- 
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Student 
Requests 

JL 

Schedule 
Request 

Schedule 
Update 

Scheduler 

Schedule 
Output 

±2LJL 

Data 

Base 

-iL 

Current 
Semester 

Registrar 
Requests 

_4L_ 

Transcript 
Request 

1 
Archives 

X 

±JiL 

Grade 
Request 

Registrar 
Output 

Figure 1-7. Registrar's  Data Retrieval System 

Each process is a uniprocess and can only perform one input or output 

operation at a time. 

The method of describing how each process operates in the STEPPS model 

requires that each port be named.   For convenience, the notation used is to assign a 

b ■  
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type o. ei.her T for lops,, .r V .or output .»d . number. A treneltlon metrlK for 

.Kh prooe» detlnes the probabitlly o. .uccdin, the «tivetion o. one port with the 

„tivtion o. «Other port.  The in.orm.1 de.tnitio ./ . P—" '•"" '« »* m,», 

recent  port  .CtlvetlPh (in this the. .« correspond to pert ectlv.tions).   The 

preces. remelns In the  «hue it is computin, end enter. . new .let. et the 

„.„ ecttvetlon p. . port.   In most context, the term. -.Ute- .nd "porf ere u.ed 

interchangeably. 

Exampl« I.D-2 

ALPHA is a process with two input ports, 10 and 12, and »wo output 
po's. 0   and' 02.   10 may transfer to state 01 or 02.   12 may      n se 
to state 01 or 02.  01 may only transfer to state »0-  02 ^^ ^J' 
only to state 12.   The graph and transition matrix for this process is 

shown in Figure 1-8. 

Graph notation 

Transition matrix (without timing) 

ALPHA 10 12 01 02 
10 0 0 a 1-a 
12 0 0 b 1-b 

01 I 0 0 0 
02 0 1 0 0 

Figure 1-8. Process ALPHA 

The trensition matrix m.k.s it possible to describe the splitlln, »I processing, 

the mergln, o. processing, end the choice o. .Iternete computetipn p.th.. In Exempt. 

I.D-2, after an input from port 10, process 
ALPHA can enter either state 01 or 02 (with 
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probability of V to 01 and "1 - ." to 02).  State 01 always enters state 10 .s the 

next state. 

Other features of a STEPPS model that can be specified are: 

1. the initial state of each process, 

2. the number of messages that a port may receive or send before the 

process changes state, 

3. the amount of computation time, defined for ^J'™*™'*** P™0" 
computes before a transition takes place (this is fixed, but random 
variable computation times can be approximated), 

4 the amount of computation time taken by a LINK to accept or send a 
message, or to restart when it is not already handling commumcat.on of 

messages, and 

5. the queue si« limits for each link and the initial number of messages in 

each link. 

The model that has just been described subsumes both the Petri net and the 

UCLA model. The links and nodes of Petri net and STEPPS models are very similar! 

each is equivalent to the corresponding STEPPS model shown in Figure 1-9. Figure I- 

10 also shows the relationships between the UCLA model and the STEPPS mode!. 

The STEPPS model allows for a more general specification of data flow than the 

earlier models since it is possible to describe the probabilities that particular data 

path, may be taken. When a message is accepted by a process it is easy to specify 

which data paths are more likely. As further information about the system being 

designed is learned or when the effects of alternate data path specification are taken 

into account, probabilities are altered by the system designers to fit the new 

structure. 
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Pttrl STEPPS 

The input port accepts N messages before changing state to an output port; the 
transition between the output ports occurs in a sequence; and the last output state 
transfers to the input port. 

Petrl STEPPS 

The input state accepts only 1 message and the transition to each output state is 
equally likely. Each output state transfers to the input state. The link may be able to 
hold more than one message. 

Figure 1-9. Mapping Between Petri nets and STEPPS model. 

  _...  I L. 
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UCLA STEPPS 

The input state accepts 2 messages before transferring to an output state. 

UCLA STEPPS 

LA. 
Ü 

The link has a limit of one message, so only one message can get to the process.  The 
process input port accepts 1 message before transferring to an output state. 

UCLA STEPPS 

The transition matrix sequences through the two output ports. 

UCLA STEPPS 

The transition matrix shows an equal likelihood of transferring to each output port 
from the input ports.  After an output the process will perform an input. 

Figure 1-10. Mapping of UCLA model to STEPPS. 

_j 



jm*"*^mmm^mm •   ' ' 'mw |[|lll^   -im m\niMm*mmt'mii iimivrrymnmt 

I.E  The STEPPS system «nd simulator 1-25 

I.E. The STEPPS system and simulator 

Once a proposed multiprocessing program has been modeled, the model can be 

implemented in the STEPPS interactive system in order to evaluate the particular 

decomposition. The data entry language for STEPPS has been designed for 

conciseness. A linear description of a directed graph and the associated transition 

matrices may require the entry of a fairly large amount of data. To facilitate the entry 

of these ciata, it is possible to recall previously stored data. The system designer can 

manipulate his model in any way he chooses, e. g. remove nodes, change parameter 

specifications, or display parts or all of his model. It is always possible to save the 

description of the model or parts of it externally in a form that may be recalled by the 

STEPPS system or examined on hardcopy. 

Several useful tools are available to help the system designer evaluate the 

structure of his decomposition. As a basic step, a STEPPS model can be certified as 

being a wall-formed model.  A STEPPS model is well-formed when: 

1. For each process, every state is attainable from any other state (If a 
process has N states, and X and Y are any two of them (possibly the 
same), the probability of starting in state X and entering state Y in N or 
fewer transitions is greater than zero. This restriction is discussed in 
later chapters.); and 

2. All ports of each process are attached to links; 

3. All links are attached to both input and output ports; 

4. The graph is connected. (When the directions of paths are ignored then 
there exists a path between every pair of nodes.) 

At some point it should be possible to simulate the execution of the modeled 

program; thus the STEPPS system contains a model simulator.  However, there remain 

problems which can prevent a successful simulation of a program structure.   One 
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problem is that the Initial state of the processes and the Initial message capacities of 

the links might be incompatible. This would cause a simulation to halt almost 

Immediately. Another problem is one of possible communication deadlocks. These 

problems are discussed in Chapter IV. 

I.E.1. Deadlocks 

A process may deadlock in either of two situations: 

1. no messages will ever be available at the link attached to an active Input 

port, or 

2. the capacity of  the link attached to an active output port  has been 
reached, and no messages will * >r be able to leave the link. 

Deadlocks may occur when a process can depend on itself improperly. They 

may also occur when a set of processes are incompatible for reasons other than data 

loops. 

Example I.E-I 

Figure Ml shows process A waiting for data from B while B is waiting 
for data from A. If the initial state of A Is changed to be 01 then the 
process has no deadlocks. If an additional change is made to A so that 
state 01 or II is activated more than once and B 's not changed, then 
this is again unsafe because a link will eventually overflow or never 
have enough data. 

Example I.E-2 

Figure 1-12 shows a non-loop siructure where there will be a deadlock 
as soon as the LI queue limit is reached. 

None of the structures presented in Examples I.E-1 and I.E-2 showed problems 

that can occur when a process has a choice of successive states.   There are other 

  .  .      .  . .     
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II« 
01 

B 
II* 
01 

01 

II 

11 01 
0 1 
1 0 

11 01 
0 i 
1 0 

LI 

L2 

TT 

01 
B 

Figure Ml. Incompatible loop. 

LI 

A    01 

02 
—4- 
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11 

12 
B 

A 31 02 

L2 

01[2> 
02 

B 

0 1 
1 0 

11   12 
U* 
I2[2] 

( )    1 
1    0 

Figure 1-12. Incompatible non-loop. 

deadlock producing structures.   For example a process may be set up to produce 

either N or M messages and the safety of this structure must be recognizable. 

''"The asterisk in the example means that this is the initial state. 

*01[2] means two occurrences of 01 before changing state. 

jjajfeiteiiiiriai -i _     
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The deadlock problem may be dealt with in two ways. One alternative is to 

require any program decompo^ion to be deadlocK-free. 

A second alternative is to determine where deadlocks may occur and the 

probability of a deadlock. The existence of deadlocks in real systems is not always 

bad as long as a suitable response can be made. For example, the ARPA network is 

not deadlock free [Kleinrock 75]. However, when a deadlock is suspected the system 

"times out" and requires reinitialization of a data message. This is a reasonable 

solution under some circumstances, but only when a system can lose information. 

STEPPS provides tools to recognize the possible occurrence of deadlocks. 

The algorithms used to identify deadlocks are basically specialized graph 

reduction techniques. A model is viewed as a graph whose nodes are the processes 

and links. Under application of these reductions, a safe model will collapse to a graph 

containing no nodes.  If the graph does not collapse then a deadlock is possible. 

As already noted, a STEPPS model of a program can be quite general. If a 

model is acyclic and meets other criteria set by Martin [Martin 69] it is possible to 

estimate mean path time; however, these criteria are quite restrictive. In genera.' it is 

not possible to estimate mean path time through a STEPPS model without simulation. 

Ordinary systems analysis techniques such as queueing theory and dynamic 

programming models are intractable in all but the simplest cases [Fishman 73, Gordon 

69].  It is for this reason that a simulator is a basic part of the STEPPS system. 

The simulator is easy to use since it is a specialized system and requires no 

programming. Naturally, any STEPPS model can be simulated using GPSS, SIMSCRIPT, 

SIMULA, or any other simulation language.  However the effort required to reprogram 

'Chapter IV discusses the deadlock problem and past work in the area. 
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a general model is not well spent at the design stage of building a multiprocessing 

program. It is at this early stage of program development that the designer needs 

information about possible program decompositions, and the flexibility to be able to 

alter his design easily and make new evaluations. If variations in the decomposition 

needed to be reprogrammed, the understanding of alternative systems would be a 

more dif*cult process than comparing alternative models using the STEPPS system. 

A variety of simulation parameters can be easily altered for comparing their 

effects on simulation results. These parameters include: restricting the number of 

available processors, identifying processor competing and noncompeting processes, and 

varying process scheduling algorithms. 

The STEPPS simulator has a set of data gathering functions which help the 

designer evaluate a particular decomposition. Some of the estimations that are made 

based on the data are: 

1. The expected time that each process is in each state. This can be 
determined without simulation if only the processing time Is of interest, 
but when process wait time is mcluded it is too difficult to estimate the 
time spent in each state. 

2. The expected number of messages h each queue. 

3. The expected number of processes waiting to send a message to each link. 

4. The expected number of processes waiting for a message from each link. 

5. The expected number of processes that will be executing simultaneously. 
This can be used to estimate the number of processors needed. 

This list is not complete for all uses of the simulator. The system has been 

designed so that it is not difficult to include additional measurement functions. 

The simulation times required to obtain these estimates vary with the 

complexity of a model.  Usually, useful estimates can be obtained with a few minutes of 
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DEC PDP-10 compute time.  The complexity of a graph is dependent on such attributes 

as the number of connections, choice of process states, and linK delays. 

! F. Thesis contributions and outline of remainder of thesis 

The contributions of this thesis are tools that a system designer can use to 

enhance the overall design of a multiprocess program. These tools, presented as the 

STEPPS system, are based on a model that is described preciseiy in Chapter II. 

Chapter II also discusses the STEPPS system's capabilities (Appendix A is a manual for 

the STEPPS system). Examples of how the STEPPS model can be used to model a 

variety of multiprocess structures are presented in Chapter III. In addition, Chapter III 

presents two larger examples: one of the use of the STEPPS system in a user's early 

design stage and the other of the use of the STEPPS system in system tuning. The 

deadlock reduction algorithm is presented as a set of theorems with proofs in Chapter 

IV. Other model analysis capabilities are also discussed. The STEPPS simulator and 

data gathering facilities are discussed in Chapter V. Chapter VI contains a review of 

the thesis results, the limitations of this research, conclusions and directions for 

further research. 



pi»,;,i. K'.  "■•■" " «> m' LnL*' s'V"1.!""-"- " •vv ■i*-'U:-'-.*rvmm'mmnuv,»'r*''' u   i ,ippiiiifippi^p<w^i">1"-,1    ' ■ '—■—'—^—  r *      —-——■ —__„_,_, 

11-1 

Chapter II 

The STEPPS Model 

This chapter provides some formalisms for later use and a precise definition of 

the STEPPS model. Chapter I presented an informal description of the model and the 

interactive design environment based on the model. 

ILA. Modeling the behavior of a process 

The term proceu describes the utilization of the processing unit of a single 

instruction stream-single data stream computer (SISD). A "process" has sometimes 

been defined as the execution of a program. For the purposes of this research, that 

definition is too limited, since it does not take into account data transfers and accesses. 

A process, as defined for the STEPPS model, exists in one of the following conditions: 

1. processing (computing) before performing an input or output operation, 

2. waiting to access an external resource that must be accessed exclusively 
(simultaneous accesses are modeled by allowing zero time between 
accesses), and 

3. waiting to complete an input or output operation. 

A process is modeled as a processing unit which can perform operations 

internally, and which then must communicate with other units through one of several 

port«. The communication occurs when a process 'dither requests or provides a unit of 

information. Each port belonging to a process has only one function: input to the 

process or output from the process. 

The internal operations of a process are unknown to an observer of i process. 

tt»Mtii<W^>lriiiii>i,»Mil'iMl''<'i»ilnilillMii'):, ,, 
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II.A Modeling the behavior of a process 

All thai can be determined is the relationships among the activities of the process's 

ports. Externally these relationships appear as probabilistic transfers of activity from 

one port to another, plus a computation time between port activities. In general, the 

computation time between any two successive port activations is dependent on the 

particular ports. Such process activities as accessing resources and sharing resources 

are modeled in terms of interprocess connections and message flow. 

As defined in Chapter I, the leal« of a proceu refers to the most recent 

activation of or attempt to activate a port. This was an informal use of the term 

"state" since, more precisely, a process can be in the state of waiting to activate a 

port, activating a port (doing the port's activation), computing before the next port 

activation, etc. The imprecise definition of "state" will be used in most contexts, and it 

will be made clear when the more precise meaning is used. 

This definition of the state of a process is an abstraction based on potential 

communications between a process and other processes. In addition, the concept of 

time is included in the model to allow a designer to include processing time for 

. computation during simulations. An important abstraction is that STEPPS processes are 

not deterministic since port activations are based on probabilities and not on a data 

directed control structure. The disadvantage in this is the inability to represent 

programs on an instruction level.   The advantage is that all potential communication 

alternatives are emphasized. 

The  complete  operation  of  a process is described  by  the  following loop 

(assuming the process starts in some initial state): 

1 Perform the input or output operation associated with the present state 
This may involve waiting to access an external resource and waiting for 
the input/output operation to complete. Both waiting imes are 
considered as time spent in a state while not processing. This step can be 
repeated a specified number of times before the next step. 

2.     Choose  a  new  state.   By  a probabilistic  method, described  below,  a 
successor state is chosen, but not yet entered. 
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3. Process (compute) for a length of time as determined by the transition 
from the present state to the next. 

4. Enter the new state and repeat 1 through 4. 

Given the Knowledge of the present state, probabilities for entering any of the 

process's states are defined. Since the state of a process is related to the activity of a 

port, probabilities are defined for potential successive port activations from every port 

activation. Note that the choice of a successor state is dependent on the present 

state. In addition, step 3 above implies that a processing time parameter is associated 

with each transition and step 1 suggests that possible communication time is associated 

with a port activation. 

Two restrictive assumptions are basic to this model. They are that (1) a 

process can not be interrupted (i.e. the transition matrix completely describes a 

process' activity) and (2) processes are neither created nor destroyed dynamically. 

These restrictions are used to keep the model relatively simple; they also make it 

possible to perform the deadlock test by graph reduction (Chapter IV)^ The lack of 

dynamic process creation and destruction can be approximated by including multiple 

copies of processes, but there is no way to use the STEPPS system to model process 

interrupts and preemption. 

II.El Data flow and links 

The previous section refers to units of information that are either requested or 

produced by a process.   A unit of information is called a mittag«.   The number of 

^These restrictions are examples of a tradeoff between analysis and representations. 
Some system structures might have been easier to represent if there were, for 
example, typed messages or dynamic process creation. However, automated system 
structural analysis wa« not found to be feasible when these richer representations 

were considered. 
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messages in a STEPPS model need not b. conserved. Thus a process may successively 

request messages from each of two input ports, yield a single message on an output 

port, and then request more messages from an input port.  A property of a message is 

that it is only a token of information.  It does not actually contain any information used 

within the model.  A process can not use the contents or type of a message to decide 

on future activity. Only the existence of a message is meaningful to a STEPPS process. 

This   restriction  will   be  shown  not   to  affect  substantially   the  class  of   program 

structures that can be modeled with the STEPPS model   The major restriction .s that 

processes   are   completely   defined   by   their  transition  matnces   and  can   nfit   be 

preempted.  Thus systems that contain parent/sibling process dependencies where the 

parent process can stop, restart, or terminate a sibling process can not be modeled. 

Processes are connected via link,. Each port of every process is connected to 

exact- one link, but a link may be attached to several ports of both input and output 

variety. Messages enter a link from output ports and leave a link going to input ports. 

Requests for messages from input ports are handled on a first in - first out basis. 

The link is the resource that can only be accessed by one process at a time. 

This access may take rero time, but the restriction is used to prevent race conditions. 

For this reason the STEPPS model includes a method that guarantees mutual, exclusive 

access to a link. Since a process may only perform one input or output operation at a 

time, it can only access one link at a time, so there is no opportunity for a "deadly 

embraceMt due to the accessing of links. 

The STEPPS model can be used to model the situation where there is a non- 

zero overhead for message transmission.  The properties of a link aro; 

^A"'d"eädly"embräcera's"defined by Dijkstra, Habermann and others occurs when two 
processing objects are able to reserve more than one resource at a t.me w-thout a 
resources being reserved initially. For example, process ^rtM^M rewuret x 
process B reserves resource y; process A needs resource y and can ^" ^UJ*" 
B relinquishes it; process B needs resource x and can not contmue until A relmqu.shes 
it.   Neither process A nor B will be able to continue. 
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1. It can store a limited number of messages. 

2. It may take a certain amount of delay Amt to either accept or transmit a 
message (same delay time for accepting or transmitting). 

3. Time may be required to start up a link when it is not already activeT. 

4. It may initially contain a specifiable number of message tokens. 

5. It can receive requests for messages and transmit a message to a 
requestor if a message is available or force the requestor to wait in a 
queue (whose size is dependent on the number of processes attached to 
the link) until a message becomes available. 

A link is not a process but its operation can cause timing delays.  When a link 

has a start-up time parameter set to be greater than zero then the link's start-up tint« 

is significant.  The other reasons that a link can force a process to wait in a state are: 

1. The link that is attached to the current state's port is already in use. 

2. The link has reached its limit of messages and the current state's port is 
an output port. 

3. The link has no messages and the current state's port is an input port. 

4. The link's defined delay time is taken to perform an input/output 
operation. 

The complete operation of a link in the STEPPS model Is described by the 

following loop: 

1. Do nothing until a process requests the use of the link. Wait for a specific 
start-up time (if any). 

2. If the request is for the link to accept a message and if the link's specified 
message limit has not been reached, then accept the message. Otherwise 
do nothing, forcing the process trying to send a message to wait until a 
message is removed from the queue. 

3. If the request is for the link to provide a message and if there are any 
messages available, then send a message to the process requesting a 
message. Otherwise do nothing, forcing the process requesting e message 
to wait until a message is sent to the link. 

4. Wait a specified amount of time (if any) for data to transfer. 

*A similar situation occurs in a virtual memory system when extra time is necessary to 
bring a page that is not currently in use Into main memory. 

 .  .. _     _ _ 
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5. Allow the process that is currently accessing the linK to continue. 

6. If a process is waiting for a message or waiting to send a message th»n 
repeat 2 to 6 (the queue discipline is FIFO). Otherwise repeat I to 6. 

Il.C. Notation and definitions 

The notation that will be used In the remainder of this thesis is described here. 

Wherever possible the linear notation will be the same as that used as the command 

language and display language for the STEPPS system. (See Appendix A for complete 

definitions and explanations.) 

The attributes associated with a process are: its ports, the linKs attached to 

the ports, its transition matrix, its initial state, and the number of repetitions of each 

state that occurs before the process chooses a new state. The attributes of a link are: 

the ports attached to it, its queue size limit, initial number of messages in its queue, 

time" to accept or send a message (delay time), and the time to restart a link that has 

been waiting for activity. 

Il.C. 1. Notation 

The following informal and incomplete W defines 5orri£t of the syntax of the 

STEPPS system used to describe the attributes of the process and link nodes.   The 

usual   definitions  for  letter,  number, digit, and other  non-terminals  with  common 

descriptive names are assumed. 

Generally used terms: 

<nBme> ::-      <letter> j <name> <diglt> | <name> <letter> 
<process name>   ::-      <name> 

tSome examples will use syntax not shown, such as: everything to the right of "!" is 
ignored and the words Attribute, Queue, Volume, etc. can be abbreviated. The 
complete syntax is defined in Appendix A. 
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<llnk nama> 
<port name> 
<port type> 
<input port> 
<output port> 

<n8me> 
<process name>.<port type><up to 3 digit«> 

HO 
<process nama>,l<up to 3 digits> 
<proces8 name>.0<up to 3 digit8> 

Connections between ports (simple connections): 

<connection>       ::-      «input port>«-<linK name> | <link name>4-<output port> 

Transition matrices: 

transition definition> 

repetition factor>::- 
<initial state>       ::- 
transition probabilities 

<port id, prob., compute 
<prob comp>        ::- 
<probability>       ::• 
<compute time>   ::- 

Link attributes: 

::-      <port name><repetition factor> - <initial 
stalextransition probabilities and times> 
<null> | [<positiva integer less than 26214a>] 
<null> I « 
and times>   ::-      «port id, prob., compute 
time> | <port id, prob., compute time>i<transition 
probabilities #->rf ♦'mes> 
time> ::-      <port type> <up to 3 digits>: <prob comp> 
<probability>|<probability>,<compute time> 
<real number between 0 and l> 
<a non-negative real number>|<nuli> 

<link attributes>  ::-      Attributes <link name> <list of attribute definrtions> 
<list of attribute definitions>   ::-     «attribute definition> | 

<attribute definition, <list of attribute definition8> 
<attribute definition>     ::-      «attribute name> : <number> 
<attribute name> ::-     Queue | Volume | Delay | Startup 

Example ll.C-1 

ALPHA,  L3, L7,  and  GAMMA are  legal 
Consider the following STEPPS commands: 

process  and/or  link names. 

ALPHAJl «-L3 
L7 «- ALPHA.02 
Attributes L3 Queue:?, Volume:3, DelayK).5, Startup:2.5 
GAMMA.I2[ 3 ]- II: .4, 3.5$ 12: 0$ 04: .6, 1.5 
GAMMA.04 -• 12: .5; 04: 0.5, 7.5 

The first two lines are examples of the notation for connections. The 
third line displays the attributes of a link. The last two lines show how 
transition probabilities are represented. Thus the probability of 
entering GAMMA.04 from GAMMA.12 is 0.6 and will taKe 1.5 units of 
time. All STEPPS displays will order the ports of a process in numerical 
order with input ports before output ports. In addition, missing 
parameters are defaulted (e.g., GAMMA.11 probabilities). 

J 



II.C Notation and definitions II-8 

V. 11      ALPHA       02 >  ^ 

L3 
Q7  V3 
DOS  325 

L7 
OJ  VO 
D00 SOO 

II 

1 
12(3) 

GAMMA 
04 • 

T 

GAMMA 
U 
I2[3] 
04» 

11 12 
0.333,0.0 
0.400,3.5 
0.000,0.0 

0.333,0.0 
0.000,0.0 
0.500,0.0 

04 
0.334,0.0 
0.600,1.5 
0.500,7.5 

Figure II-l. Process and link graphical notation 

Only one port of a process will have a » when a process's entire transition 

matrix is displayed. 

A graphic notation used in later sections and chapters is shown in Figure II-l 

of the last example. A process is a convex figure and will be represented by either 

boxes or circles. Links will always be represented by straight lines. Connections will 

be represented by lines with arrow heads denoting the direction that a message would 

flow. 

Chapter III contains an example set of simple and complex STEPPS models of 

program communication structures. These examples demonstrate that the STEPPS 

model is expressive enough to represent both toy and non-toy structures while 

eliminating the details required by programming languages and the details required by 

a Petri-net like model. 

tNot all of the attributes of a process or a link will be displayed in later 

examples. 

 t  
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II.C.2. Summary of ptrimotort to tho STEPPS modol 

The following is • complete list of the parameters that must be supplied for e 

STEPPS modelt 

1. A connection betw-*r each process port and a linK. Default port 
connections are to link "DANGLING". 

2 A transition matrix for each process showing the probability of entering a 
new state from each state and the amount of processing time taken before 
the transition. Default probability values are determined by assigning 
equal parts of any unassigned probability to each defaulted transition. 

Default compute times are zero. 

3. The initial state of each process (04*). The first port defined is the 
defaulted initial state. 

4. The number of times a port activation can repeat before a new state Is 
entered (I2[3]).  Default is 1. 

5. The maximum queue length allowed for each link (Q:7). Default is I. 

6. The initial number of messages in each queue (V:3). Default is 0. 

7. The delay time caused by the operation of each link (D:2.5). Default is 0.0. 

8. The start-up time to wait when using a link not already in use (S:0.5). 

Default is 0.0. 

II.C.3. Graph definitions 

The STEPPS model is a graphical model and thus some abstractions have 

proven useful in discussing the model. When a graphical structure is similar to that of 

classical graph theoretical abstractions, the classical structure name has been used . 

Some useful definitions are: 

Nod« — A node is either a process node or a link node. 

^he STEPPS system assumes default values for some of the parameters.   Examples 

refer to Figure II-1. 

♦Many o^ the abstractions are based on the text by Berge [Berge 62). 
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Path — A path between two nodes is a sequence of nodes with each node connected 
to the next one in such a way that a process is connected by an output port to 
a link that is connected to an input port of the next process in the path. There 
may be many paths between any pair of nodes. A path may include alternate 
branches as long as each branch leads to the final node of the path. 

Adjaeent -- An input port and an output port are adjacent if they are both connected 
to the same link and no other ports are connected to that link. 

Attached to — A port is said to be attached to a link if it is connected directly to tla 
link. An input or output port is attached to a (possibly different) process node 
if the port is attached to a link that is attached to the process by a link of the 
opposite type In particular, there must be a path between the port end the 
process through only one link. 

II.C.4. State definition» 

The structure of a process is described by potential transitions among the 

states. The following abstractions are used when discussing the properties of states 

of a process: 

ln-tequencc — A subset of the states of a process is said to be in-sequence if the 
transition matrix of the process shows that once the process enters one state 
of the set then, with probability 1, the process will enter the other states of 
the set in a particular sequential order, in addition, no other state of the 
process may transfer to any of the elements in the sequence other than the 
first state. 

Onto — State x is onto state y if for any sequence of transitions starting at x and 
terminating at the first occurrence of y, state x is not reentered. 

One-to-ane — is a relationship between two states of a process occuring when the 
only way for a state to recur is to enter the other state exactly once and vice 
versa.  State x is one-to-one with state y if x is onto y and y is onto x. 

Immediate-recurrent — A state is immediate-recurrent if it can return to itself in one 
transition. The process may return to the immediate-recurrent state without 
entering any other state. 
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II.D. STEPPS sygiem capabilities 

The STEPPS system is designed for interactive use. It rontains facilities to 

enter, manipulate, display, save and retrieve the description of a model. There are 

facilities to test the legality and consistency of a description. There is a facility for 

the automatic recognition of possible deadlocks. In addition, the STEPPS system 

contains a parameterizable model simulator and facilities to display or copy the data 

gathered during a simulation. 

The notation defined earlier in this chapter is used both to enter a model 

description and to c splay the model. The displays available include processes and link 

connections, and transition values for a port and for a process. All possible paths 

between any two processes can be displayed, but this is a very expensive operation 

and not recommended because of large momory requirements. 

Another fsature of fht? v1EPPS system h that it has been designed to facilitate 

application o analysis programs that might be defined externally to the STEPPS 

system.^ Such analysis programs could I written in Sail [VanLehn 71], Bliss/10 [Wulf 

71], or FORTRAN.   These program be abla io operate on process transition 

matrices, on process r tion matricu, and on the graph connection matrix. The 

incorporation of externaiiy defined functions necessitates a reconfiguration (• new 

LOAD) of the STEPPS system, but no program modifications are required. 

*The details of doing this are presented In Appendix A. 
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Chapter III 

The Use of the STEPPS Approach to Program Design 

This chapter presents examples using the STEPPS model and the STEPPS 

system. These examples demonstrate that the model is rich enough to represent 

several standard program communication structures. One example demonstrates how 

the STEPPS system can be used in the initial design of a program and another example 

demonstrates how STEPPS can be used to analyze and help tune a multiprocessor 

program that is under construction and was designed without using the STEPPS 

system. 

III.A. Use of »he STEPPS model 

The STEPPS modeling schema can be used to represent a variety of program 

conulruclt. The program designer controls the amount of detail he wishes to Include in 

a model. Since the STEPPS model has been shown to be able to represent the detail 

of both the UCLA and Petri net models, it can be used to represent programs at the 

same operation level as those models. However, STEPPS is intended to be used to 

depict a decomposition at a morv modular level which more closely represents a 

functional system decomposition. 

As a consequence of the STEPPS model being a communications structure 

model, programming details such as specific data dependent branching, indefinite (but 

finite) looping, case statements, and assignment statements are not intended to be 

modeled.   Thus  the  following examples will demonstr.te that  the  STEPPS model 

mtmi-Atir—          - -w----         ...■■  _  _ .  ._.,...-f....^._. .. 
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abstrtction, which is very much less expressive (or powerful) than a programming 

language and more ' -?ressive than the simpler Petri-net or UCLA model, has the 

expressive richnes; jdel some real program structures. 

Ill A I. Fork and join 

Informally, the ability for the STEPPS model to represent multiple data paths 

has alreaoy been demonstrated. The situation is that one process can cause more than 

one other process to commence processing (Conway's "fork" [Conway 66]). After 

some concurrent processing, the data paths may unite and processing again occurs In 

only one processing unit (Conway's "join"). There are several ways to model fork and 

join. Figure III-1 shows one method. Process FORK sends a message to both process 

UP and process DOWN. In turn, they send messages to process JOIN1. J0IN1 must 

receive a message from UP before it requests a message from DOWN. 

&     ii FORK 

01 

02 

l^ 
ii    UP   oi 

ii DOWN oi 

F0RK.I1- 
FORK.Ol- 
F0RK.02' 

UP.I1- 
UP.01- 

* 01:1.0,t 
02:1.0 
11:1.0 

«01:i.0,t 
11:1.0 

J01N1.11- 
J0IN1.I2- 
JOlNl.Ol- 

D0WN.I1- 
D0WN.01' 

• 12:1.0,t 
01:1.0,t 
11:1.0 

♦ 01:1.0,t 
11:1.0 

Figure III-l. Fork and join processes 
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III.A,2. Subroutine processes 

A subroutine process is a program that can be shared among several different 

processes. In terms of a STEPPS model a subroutine is a process that accepts 

messages from another process, performs some computation and then sends a message 

back to the calling process. Since messages do not contain any identification nor any 

other information, the subroutine can not direct a resulting message back to the caller 

process. Instead a technique is used whereby the caller waits for a response from the 

subroutine before it proceeds. Figure 111-2 shows a graphical representation of the 

subroutine SUBR and the process, CALLER, that calls the subroutine. CALLER calls 

SUBR by sending a message to link SUBIN. As soon as the message is accepted 

CALLER waits for a reply from link SUBOUT. Within this model each process that wants 

to use the subroutine waits its turn to send a message to SUBR. Once the process 

sends its request to the subroutine it waits for a reply from the link SUBOUT. The 

timing parameters of the subroutine and the caller represent the action of a caller that 

does no processing concurrently with a subroutine process. 

A subroutine process can also be called while the caller process continues 

processing concurrently. This situation is modeled slightly differently than the one 

above. The difference is due to the requirement that the caller process receives the 

reply corresponding to its original request. Otherwise a second process could receive 

a reply before the subroutine computes long enough to request its processing, i.e. the 

second process receives the reply corresponding to the first process initialization. 

This problem exists because messages (as defined in the STEPPS model) do not contain 

^An implication of this method is that there is no guarantee that the calling process 
receives the result of its call to the subroutine. However if, by convention, all calling 
processes take no time before requesting their respective results, no problem ensues 
because requests to and from the subroutine will occur in the same order. 

             . _. .._    ....       ... . .     . . . 
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>/ \(. V SUBIN 

^... ^ 
y 

Qtwutt 1 

CALLER 

I 

< 

« 

11 

SUBR 

01 

/ S..   * n 

\ f SUBOUT 

V V 
Ou»u» • 1 

CALLER.O   - I : 1.0,0,0 !  wait for response, no concurrent computation 

SUBR.U - 01:1.0,t       ! t is subroutine compute time 
SUBR.Ol - 11:1.0,0.0    ! Wait to be called again 

Figure 1II-2. Subroutine process 

information and processes do not direct messages to other processes, only to 

connected links. A solution is to introduce an intermediate process whose only 

function is to call the subroutine and wait for a response. This is shown In Figure III- 

3. CONCALLER continues to process before eventually requesting a reply from port Ix. 

It is necessary that 0,, be onto Ix, i.e., once a message is sent from port 0X eventually 

a message will be requested at Ix. The process INJTER will actually perform the 

subroutine call in the same manner as shown in Figure III-2. 

III.A.3. PoiBBOn processeB and general service time proceBBea 

Typically, queueing theory models contain assumptions concerning the flow of 

messages   within   a   system   of   message  processors.    These   assumptions  concern 
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A    ...    A 

CONCALLER 
Ox 

SUB1N 

Queue t 1 

SUBOUT 

Queue - 1 

CONCALLER.Ox - Ix:p,t  ! p S 1 

INTER.I1 -»01:1.0 
1NTER.01 - 12:1.0 
INTER.I2 - 02:1.0 
INTER.02 -  11:1.0 

Figure III-3. Concurrent processing subroutine cell 

processing rates and take the form of assigning processing time as a random variable. 

The STEPPS system models a single processing time related t a given state, but it is 

possible to approximate a processing rate taken from some probability distribution. 

The   method   used   to   approximate  the  production  of   messages   with   an 

interarrival rate taken from a known probability distribution is as follows: 

1. Let f be the probability density function of the given distribution. Choose 
n to be the granularity of the approximation. 

2. Divide the range of f into n distinct intervals I| In. 

3. P| - \   f(t)dt This is the probability of t being in the Interval. 

4. tj - (Um)dt)/(p|) 

   ,   ,  
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6. 

This is the expected value of t in the interval. 

Let  the  process POISSON send messages to linK LINK ""d form the 
connections LINK-P01SS0N.01,.... LlNK-POlSSON^.  See F.gure (UM). 

The transition matrix for process A is defined by: 

POISSON.Ox - OJ: Pj, tj for x, i- I n. 

LINK 

Figure 1II-4. Poisson arrival process 

An example of this technique can be used to approximate a Poisson arrival rate 

in the following manner. The density function for an exponential rate between sending 

messages with mean X is (1/X)e_ '* 

Choose a value,., for the probability of the start of the distribution. Thus 

• -^l/X)e-t/xdt 

which implies that the maximum value for t is tmax - -Xln(.). The interval [tm8X,oo) is 

one   interval   and  that  the  remaining interval. [0,tmax). is divided  into  n-1   other 

Intervals.   For convenience, the division will be into uniform intervals of size w - 

(t      )/<n-l).t Thus ths values for the probabilities for intervals Ij through !„_! ire: 

Pi-fVl/x^Adt-e-^^^-e^WX. 

The values for the times for intervals Ij through In.i are: 

!, - t^U-^ dt - ((i-Dsw^X) e^-l^A - (i»wX) e-'^A . 

When X - 260, • - 0.001, and n - 10, the values for Pj and tj are: 

^An example of » non-uniform interval will be shown in a later section of this chapter. 

»The STEPPS system has a feature to automatically determine the probability values 
end time given these parameters. 

■w 
. .          _ 
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A.0X - 01: .535, 87.138| 02: .249, 286.696; 03: .115. 486.253; 04: .054, 685.81; 

05: .025, 885.368 

A.0X - 06: .016, 1084.925» 07: .005, 1284.482» 08: .002, 1484.041; 09: .001, 

1683.604; 010: .001. 2056.011 

In a similar manner, any arrival rate at a link (e.g. to link ALPHA above) can be 

approximated using the STEPPS model. 

A general service time process can also be approximated using the STEPPS 

model (Figure II1-5). The transition matrix for the general service time process, 

GENERAL, is defined by: 

GENERAL11 - OJ: pj, tj and GENCRALOj - II: 1.0, 0.0 

II 
GENERAL 

OJ   02   . . .   0n 

V   V 

Figure III-5. General service time process 

III.A.4. Pipeline of processes 

One convenient structure for asynchronous multiprocessing is a pipeline 

consisting of a set of processes organized so that the results of one process form the 

data for the next process. Multiprocessing occurs when there are data in each of 

several processes in the pipeline. Figure III-6 shows the general structure of a 

pipeline of processes. At one end is a source of data units (process A) and at the 

other end is a sink for processed data units (process F).  Connected in between the 

 i   . .    
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two .r. orocessas e.ch of which has input ports all .tt.ch.cl to one link and output 

ports all attached to another link. Since the results of one process are the data for 

the next, each link between processes is connected to input ports of one proces. .nd 

output ports of a second process. Historically, structures similar to . pipeline have 

been successfully studied using queueing models [KleinrorK 751 A STEPPS model 

obtains results pertaining to this structure by means of simulation. 

Figure III-6. Pipeline of processes 

III.A.5. Synchronization 

A multiprocessing program may contain process configurations that require 

synchronization. One of the better-known synchronization primitive sets is Dijkstra's P 

and V operations on a semaphore. It is possible to model this behavior with the 

STEPPS model. A process implements a P operation by sending a message to . 

LOCKSEM link and then waiting for a responding message before continuing (I.e. w.lt 

for a response from LOCKEDSEM link). Likewise a V operation corresponds to sending 

a message to an UNLOCK link.  The STEPPS model would be: 

! Attach to the lock semaphore LOCKSEM*-PROCESS.O100 
PROCESS.1100*-LOCKEDSEM 
PROCESS.O100-   1100:1.0 ! After performing a lock, 

! wait for a response before continuing. 

PROCESS.I100-    other ports 
UNLOCKSEM-PROCESS.0101 ! Attach to unlock semaphore 

The notational definition of the synchronization processes is as 'ollows: 

i  _   . .    ..    _  
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LOCKPROCESS.I1H.0CKSEM 

LCX:KPROCESS.12«-SEMAPHORE 

L0CKEDSEM«-L0CKPR0CESS.01 
LOCKPROCESS.il - «12:1.0 ! Obtain message from semaphore 
L0CKPR0CESS.I2 ■ 01:1.0 ! Let process performing lock continue 
L0CKPR0CESS.01 - 11:1.0 ! Wait for next locK request 
UNLOCKPROCESS.I l^-UNLOCKSEM 
SEMAPH0RE«-UNL0CKPR0CESS.01 
UNLOCKPROCESS.il -* 01:1.0 ! Arid one to semaphore 
UNL0CKPR0CESS.01 - 11:1.0 ! Wlit • x more unlocks 
Attributes SEMAPHORE Queue:«, Volume:! 

! n is m*<imum value for semaphore 
I Initial volume of 1 allows first lock to get through. 

This technique is almost an exact analogy to Dijkstra's semaphores in that the 

number of messages residing in the SEMAPHORE link determines the number of LOCK 

operations that can be performed. The difference is that there is a limit, n, of possible 

locks. The use of UNLOCKPROCESS and UNLOCKSEM link is redundant. The process 

could be attached to SEMAPHORE instead of UNLOCKSEM: 

SEMAPH0RE«-PR0CESS.0101 ! Attach to unlock the semaphore. 

The graphic structure of the lock/unlock processes is shown in Figure 111-7. 

A second example of a synchronization problem is the Reader/Writer problem. 

The problem is to allow multiple reader processes to be able to pass through a lock, 

but to exclude all writers so long as any reader is not complete. Once e writer 

process tries to perform a lock other readers and writers are not permitted until after 

the writer has performed an unlock. Naturally, the writer process does not proceed 

until all readers have completed their read unlocks. The solution to this problem 

requires three processes: READLOCK, WRITELOCK, and WRITEUNLOCK (Figure III-8). A 

reader process will send a message to the PEAOLOCK process and wait for a reply 

from the READLOCKED link before continuing. Likewise, a writer process will send a 

message to the WRITELOCK process and wait for a reply from the WRITELOCKEO link 

before continuing.   The link RWLINK initially contains N messages.   Each reader will 

^_. . .   __... _....   . 
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i 

LOCKSEM   I 
I 

LOCKPROCESS   „. 
u 01 

12 
 7K  

Unlock the Semaphor'e 
Q:n v:l 

SEMAPHORE 

LOCKEDSEM 

—>  

Figure III-7. Lock/Unlock synchronization 

cause one message to be removed from RWLINK. Thus there can be a maximum of N 

simultaneous readers before any reader is blocked^ The WRITELOCK process requests 

all N messages from RWLINK before it allows a writer process to continue. When there 

are already reader processes that have requested messages from the RWLINK, 

WRITELOCK will wait until all current readers have performed a read unlock by sending 

a message to RWLINK (each such message will be requested by WRITELOCK). After 

WRITELOCK has all of the messages that were at RWLINK it allows a writer process to 

proceed. No retders can proceed since there will be no messages at RWLINK until a 

write unlock is performed by causing WRITEUNLOCK to send N messages to RWLINK 

^s with the PV model, there is only a finite number of possible readers.  This Is not a 
problem because the STEPPS model does not Include dynamic creation of processes. 

j .    ... _   _     . 
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•nd service to processes swsitlng it ■ llnK Is FIFO. Only one writer process csn pass 

the lock since esch would csuse N messages to be requested from RWUNK end there 

can never be more than N messages there. 

Readlock 

Readunlock 

Wrlteunlock 

Writelock 

4 

4->u READLOCK 01 
12 
T 

II 01[N] 
WRITEUNLOCK 

4 

4 

RWLINK 

QH 
VN 

 m 
II 01 

WRITELOCK 4 

Readlocked 

Wrltelocked 

READL0CK.12«-RWLINK 
WRITEL0CK.I2«-RWLINK«-WRITEUNL0CK.01 

READL0CK.I1- 
READL0CK.I2- 
READL0CK.02- 

• 12:1.0 
01:1.0 
11:1.0 

WRITELOCK.Il- 
WR1TEL0CK.I2[N]- 

* 12:1.0 
01:1.0 

WRITEL0CK.01- 11:1.0 

WRITEUNLOCK.il- 
WRITEUNLOCK.OUN]- 

«01:1.0 
11:1.0 

Attribute RWLINK Queue:N, Volume:N 

! Request a message from RWLINK 
! Allow a reader to proceed 
! Wait for another read lock 

! Request message from RWLINK 
! After requesting N messages 
! from RWLINK, allow a reader to proceed 
! Wait for another write lock 

! Send messages to RWLINK 
! After sending N messages to 
! RWLINK, wait for next writer unlock 

Figure 111-8. Reader/Writer Synchronization 

__.  .  ,  _._ _    _._ 
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III.B. Using STEPPS during system design: A Bliss/11 compiler 

Bliss/11 [Wulf 72a] is a system implementation language designed for the DEC 

PDP-11 computer. Its only compiler is an optimizing cross compiler implemented on 

the DEC PDP-10. The language has been used as the implementation language for the 

Hydra operating system [Levin 75, Wulf 75b] for the Cmmp computer, as well as for 

other PDP-11 systems programs. 

There are several reasons why a Bliss/11 compiler is an appropriate program 

to implement on a multiprocessor (Cmmp). First, since Bliss/11 is the system language 

for Hydra and Cmmp, it should be available on the Hydra system to make Cmmp self- 

sufficient. In addition, the mechanism for moving programs between the two computers 

is a time consuming and, presently, awkward arrangement. A second reason Is that the 

Bliss/U compiler is very large and slow. The compiler requires a large amount of 

PDP-10 memory to do even small compilations. A third reason is that the internal 

structure of the Bliss/11 compiler [Wulf 75a] consists of separate phases that could 

possibly be divided into separate processes1". Thus a Bliss/11 compiler is a program 

that can be considered for implementation on a multiprocessor. 

The STEPPS system will be used to predict how a Bllss/U Implementation 

might perform as a multiprocess program. Possible structures for the compiler and 

structural refinements will be discussed. 

III.B.1. An overview of the structure of Blitt/11 

The  Bliss/11  compiler  is divided into seven relatively  independent  phases 

(Figure  111-9).   The Lj's in the figure refer to intermediate representations of data 

passed between the phases. 

^This conjecture has been discussed with the authors of Bliss/11 [Wulf 75a]. 
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Figure III-9. Bliss/11 phase structure 
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The following is ■ description of the compiler [Wulf 75«] : 

... the subroutine is the program unit to which each 
physical phase is applied. Thus the source text for an entire 
subroutine is read and the phase LEXSYNFLO applied to it, 
producing intermediate form Lj.   In turn DELAY, TLA, ..., and 
FINAL are applied to the intermediate representations Lj, L2  
Lg for the same subroutine, producing, respectively, L2, L3  
L7. The next subroutine is processed only after all phases have 
been applied to its predecessor. A consequence of choosing the 
subroutine as the unit to which successive phases are applied is 
that optimizations are applied to this unit; i.e., no optimizations 
are applied which involve detailed structural knowledge of more 
than one subroutine simultaneously. 

The general attributes of the major phases are 
summarized below ... 

-iTO«i«"ll%W'iiB(iI"»™F«"l """'"''lUPIPI 

in-14 

LEXSYNFLO 

DELAY 

This phase performs lexical analysis, declaration 
processing, syntax analysis, and flow analysis. 
The input is the source program unit in character 
string form. The output consists of: (1) a set of 
symbol table entries, (2) a tree representation of 
the parsed program unit, and (3) a set of lists 
(generally threads running through the tree) 
which define feasible global optimizations 
(constant expressions whici may be moved out of 
loops and the like). 

Delay has three primary functions: (1) to 
determine the "gen8ral shape" of the object code 
to be generated, (2) to estimate the "cost" of each 
(linear) program segment, and (3) to determine the 
evaluation order for expressions. By the "general 
shape" of the object code, we mean those 
properties of the operators (e.g., commutativity) 
or properties of the target machine (e.g., indexing) 
which may be used to simplify the computation of 
a value. Decisions are also made at this point as 
to whether any (or all) of the "feasible" global 
optimizations are, in fact, desirable. Actual 
machine code is not generated; rather various 
flags and fields are set to guide local code 
generation in a later phase. The cost metric is 
used to guide selection of evaluation order and in 
register allocation. The output of this phase is 
identical to that of LEXSYNFLO (i.e., symbol table, 
tree,  etc.) except  that  certain  information  has 

^Reproduced with permission. 

,*.** mm       
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been added to the tree to signal the subsequent 
phases of the compiler concerning the shape, cost, 
and execution order of the code to be generated. 

TLA, RANK, PACK 
The function of these phases is what in ot.ier 
compilers is frequently called "register allocation"; 
the difference being that not only registers are 
allocated, but memory locations as well. The 
ontities which are assigned to ! .• ions (registers 
or memory) include both cs. .ipiler-generated 
temporaries and user-defined "local" variables. 
The output of this phase includes that of DELAY 
plus the bindings. 

CODE The function of the CODE phase is to produce 
locally optimal code for each tree node; hence its 
output is a representation of the targtt machine 
language (the tree is discarded at this point). In 
some cases the locally optimal code is completely 
determined in DELAY; in these cases the action of 
CODE is trivial. In many cases, however, further 
analysis is required. For example, it is CODE'S 
responsibility to determine the optimal sequence 
of shift and masK instructions to move an 
arbitrary subfield of one word into an arbitrary 
position of another. 

FINAL FINAL has  two responsibilities.   The simpler  of 
these is to prepare the final listing and object 
code files. The more interesting responsibility is 
a collection of relatively ad hoc "peephole" 
optimizations. These optimizations are performed 
by examining the actual code produced by CODE 
and eliminating inefficiencies which CODE was 
unable to detect. For example, FINAL will replace 
a jump instruction which transfers to another 
jump by one which transfers directly to the 
ultimate destination. It will also remove 
unreachable code, reverse the sense of certain 
tests, combine some instructions, etc. 

As can be seen from the above, the phases operate independently of each 

other with respect to each subroutine.   Thus while one phase is working with one 

subroutine another phase can be compiling a different subroutine.  The compiler looks 

very much like a pipeline. 
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111 B 2 Application of the STEPPS system to Bliss/l 1 

A multiprocess model of the Bliss/11 compiler was examined using the STEPPS 

system. A protocol of the use of the system for this application is presented in 

Appendix B.  The issues that were explored concerning the multiprocess decomposition 

are: 

1. How do specific alternate multiprocess decompositions of the compiler 
affecf throughput? Throughput was measured in terms of the number of 
routines^ processed per unit time. 

2. Does the performance of the model suggest other decompositions? 

3. When the number of processors is restricted, what are the effects of 
different scheduling algorithms? 

4. What are the relationships among the number of processors available, the 
average number of active processes, and throughput? 

The model of a multiprocess Bliss/11 compiler follows the same general 

pipeline structure as the phases of the original compiler [Wulf 75a]. Each phase is 

modeled as a server with an exponentially distributed processing rate. 

Measurements of the operation of the real Bliss/11 compiler were taken; nin» 

programs of differing complexity were compiled by an instrumented version of the 

actual compiler. The total time spent in each phase was determined and the 

corresponding percentage of total piocessing time was computed. These data are 

shown in Figure III-10. The phases are grouped slightly differently than those 

discussed earlier, due to actual Bliss/11 structu-al properties; LEX is separated from 

SYNFLO, and TNBIND combines TLA, RANK and PACK. 

The processing rates of the STEPPS-modeled processes were chosen based on 

the percentage of total processing from the Bliss/11 measurements. For example, the 

processing rates for CODE and SYNFLO were chosen to be .084 units and .216 units 

•"The unit of compilation in the Bliss/11 compiler. 
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Time Percent of 
(seconds) Total 
67.92943 26.0 X 
56.38539 21.6 7. 

9.64012 3.7 X 
2.78647 10.7 X 

22.08524 8.4« 
77.17126 29.6« 

261.07621 100.0 7. 

Phase 

LEX 
SYNFLO 
DELAY 
TNBIND 
CODE 
FINAL 
Total 

Figure 111-10. Bliss/11 measured data 

respectively. The LEX process was considered to be the generating process which 

provided elements to be processed at an exponential rate with mean .260 units. 

Figure III-11 shows the set of commands to the STEPPS system used to create the 

model (Appendix A contains a complete description of the STEPPS commands). 

Model Bill 
Density expon port Iex.n0 link Is mean .26 
Density expon port synflo.oO link sd mean .216 
Density expon port delay.oO link dt mean .037 
Density expon port tnbind.oO link te mean .122 
Density expon port code.oO link cf mean .084 
Density expon port final.oO link fr mean .296 
synflo.I20«-ls 
delay.I20«-sd 
tnbind.I20«-dt 
code.I204-tc 
finai.I20*-cf 
synflo.oO - I0:0j 120:1/10:1 
copy delay.I20, tnbind.I20, code.I20, final.I20.synflo.I20 
copy delay.oO, tnbind.oO, code.oO, final.oO:synflo.oO 
result.iO*-fr 
schedule noncompete result 
attribute tc,cf,dt,fr,ls,sd        Queue:100 

Figure III-ll. STEPPS Bliss/11 model commands 

A graph representation of this model is shown in Figure 111-12. 

The first set of experiments consisted of simulating the model with one to six 

- 
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LEX SYNFLO DELAY i>-i>  TNBIND ^-^   CODE 

LS SO DT TC 

> -^|    FINAL 

CF 

»-^j RESULT"] 

FR 

Figure 111-12. Bliss/11 graph model 

pr lessors using one process per phase. For each number of processors, the effects 

of three scheduling algorithms were also measured. These algorithms were: First-In- 

First-Out (FIFO), Random, and Link (select the process with the :argest number of 

waiting messages).  These algorithms are discussed in Chapter V. 

The results of these experiments are shown in Figures 111-13, 111-14, 111-18, IH" 

16, and 111-17. The measurements were performed on 700-900 messages 

(representing routines) passing from the LEX p.ocess through the FINAL process. The 

maximum possible throughput rate per experiment (i.e., simulation execution) is the rate 

at which routines are produced by the LEX process. Thus the maximum expected 

throughput rate is the reciprocal of the processing rate of LEX for each simulation, 

4.00 routines per unit time when the expected time between routines is .250 (1 

processor, FIFO). The observed throughput rate was found by dividing the number of 

routines entering RESULT by the total processing time. 

Prcrs.       LEX Rate        Thru Rate      7. Thru Rate       Avg. Active        Avg. Waiting 

1 .254 
2 212 
3 .279 
4 .252 
5 .272 
6 .259 

0.96 
1.78 
2.74 
3.40 
3.37 
3.28 

240 
48.4 
76.4 
85.6 
91.7 
88.3 

1.00 
2.00 
2.96 
3.33 
3.66 
3.57 

4.98 
3.28 
1.61 
0.44 
0.04 
0.00 

Figure 111-13. Bliss/11 Simulation FIFO Table 

The measure that was used as the basis for comparing performance was the 
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Prcrs. LEX Rate Thru Rate 7. Thru Rate Avg Active Avg.Waiting 

1 .248 0.99 24.6 1.00 4.98 

2 .241 1.84 44.3 2.00 3.39 
3 .271 2.65 71.8 2.65 1.83 
4 .259 3.45 89.4 3.54 0.49 

5 .255 3.58 91.3 3.57 0.00 

6 .270 3.26 89.7 3.47 0.00 

Figure 111-14. Bliss/11 Simulation LINK Table 

Prcrs. LEX Rate Thru Rate 7. Thru Rate Avg Active Avg.Waiting 

1 .242 0.91 22.0 1.00 4.64 

2 .241 1.96 47.2 2.00 3.37 
3 .273 2.78 75.9 2.94 1.53 
4 .263 3.36 88.4 3.50 0.48 
5 .257 3.56 91.5 3.62 0.06 
6 .259 3.50 90.6 3.64 0.00 

Figure 111-15. Bliss/11 Simulation RANDOM Table 

percent of maximum throughput rate. This measure was chosen because the measured 

throughput rates varied due to the approximation to exponential processing rates. For 

example, four processors using FIFO scheduling showed a throughput rate of 3.40 out 

of max rate of 1/.252 - 3.97 for 85.6 percent. 

Several implications concerning this multiprocess model were apparent from 

these results. First, the addition of more processors has a major, approximately linear, 

effect on throughput until four processors are used. Addition of a fifth processor does 

not cause a very large improvement (about 867. to 917.). Adding a sixth processor 

does not indicate any significant difference. Another factor is that the different 

scheduling algorithms do not seem to significantly affect the rrod »i's performance. The 

average number of active procettet (and processors) and average number of ready 

proceuei measures also indicate that Mter four processors are available most of the 
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Figure III-16. Bliss/11 Percentage Maximum Throughput 
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required processing power is available. This helps confirm the observation that the 

addition of more processors beyond four does not lead to as major a performance 

improvement as adding one processor to fewer than four processors. 

The next set of experiments included multiple copies of some of the slower 

processes as part of the model as an alternative to the simple pipeline structure. The 

only process that could not be duplicated was the LEX process since part of its 

function is recognizing the sequences of characters as delimiting a routine definition^ 

An examination of the data indicated that there were three major bottlenecks. The 

bottlenecks were identified by locating links between >rocesses where the expected 

queue length was large. Figures 111-18, 111-19, and 111-20 show the expected queue 

lengths at the links between the processes. Naturally, these werö the same processes 

that had relatively slow processing rates».  Three alternate structures were examined: 

A. 2 FINALS and 2 SYNFLOs; 

B. 3 FINALS and 2 SYNFLOs; 

C. 3 FINALS, 2 SYNFLOs and 2 TNBlNDs. 

Prcrs.         LS SD DT TC CF 

1 9.194 0.000 0.000 0.000 0.000 
2 8.403 5.148 7.172 8.107 9.354 
3 2.108 0.010 0.263 1.505 6.401 
4 5.682 6.648 8.817 9.048 9.643 
5 2.765 t.770 2.556 3.300 6.674 
6 3.596 2.100 3.432 5.350 8.732 

Figure 111-18. Bliss/11 Simulation FIFO Queue Lengths 

These structures were run with 1, 5, 8 and all possible processors.   Although 

^his can be done by Begin-End counts. 

*The large queue that formed before the Code phase was due to Code being unable to 
send results to Final and thus had to wait before processing new routines. 
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Prcrs. 

Prcrs. 

IS SD DT TC CF 

1 0.410 0.616 0.000 0.219 0.001 
2 7.923 0.087 0.987 5.364 9.111 
3 4.139 0.078 0.713 4.533 8.892 
4 3.455 1.136 4.623 6.972 9.248 
5 4.266 3.268 5.757 7.018 8.945 
6 5.903 6.204 8.404 8.999 9.836 

Figure 111-19. Bliss/11 Simulation LINK Queue Lengths 

LS SD DT TC CF 

1 8.461 4329 1.796 0.623 0.717 
2 7.928 0.404 0.864 1.362 7.925 
3 4.661 0.047 0.975 5.494 U S 
4 3.355 2.727 5.326 7.749 9.ib3 
5 3.419 1.488 3.306 5.738 9.176 
6 2.976 3.762 7.766 8.661 9.472 

Figure 111-20. Bliss/11 Simulation RANDOM Queue Lengths 

the simulations were run using all three scheduling algorithms, there was not much 

difference in performance due to the scheduling algorithm (less than one per cent). 

Thus Figures 111-21, 111-22 and 111-23 show the results using either FIFO or LINK 

scheduling. Figures 111-22 and 111-23 also show graphs of the FIFO «-esults without 

using multiple copies of phases. As the graphs show, each of the multiple process per 

phase models performs better than the single process per phase model, given enough 

processors.  Structure C, above, performed the best among them. 

The difference among the structures was not very large, viz. about 57. of the 

maximum rate. Although there is improvement using the multi-copy structures, the 

improvement over the single process per phase does not appear to warrant such 

structure. Instead, the bottl«neck appears to be the LEX process which is inherently 

sequential.  This observation suggested another experiment to determine the effects of 
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Decom- Prcrs. LEX Avg. Avg. Thru «Max 

position Rate Active Ready Rate Thru Rate 

Bll (A) 1 .253 1.00 4.78 0.98 24.8 

3 .251 2.88 2.23 2.87 72.0 

5 .272 3.68 2.28 3.59 96.8 

8 .267 3.79 0.00 3.70 98.8 

Bll (B) 1 .276 1.00 4.79 0.98 27.0 

3 .276 2.82 2.04 2.77 76.4 

5 .261 3.71 0.38 3.65 95.3 

6 .255 3.99 0.00 3.89 99.2 

8 .253 3.94 0.00 3.93 99.4 

9 .278 3.64 0.00 3.58 99.5 

Bll (C) 1 .288 1.00 5.43 0.92 26.5 

3 .263 2.81 2.25 2.76 72.6 

5 .274 3.55 0.41 3.46 94.8 

8 .259 3.86 0.01 3.85 99.7 

11 .244 4.03 0.00 4.07 98.3 

Figure 111-21. Table of Results of Multi-copy Bliss/11 Phase Models 

further decomposing LEX into a pipeline of phases: FILE, ATOM, and NT|SEARCK The 

goal was to increase the rate at which messages reached the SYNFLO phase. The 

results of this set of experiments are shown in the table of Figure 111-24. It can be 

seen that the rate at which messages queued up to the SYNFLO phase decreased from 

.26 to .18 for an increase of 447. due to the further decomposition of the LEX phase. 

Other process structures may also be studied using the STEPPS system. 

Current research into the phases of Bliss/11 indicates that two of the phases could be 

restructured. The DELAY phase [Johnsson 76] could perform more complex operations 

(and would be slower). The FINAL phaset could also be altered or decomposed even 

further into smaller independent processes. 

Since the data presented represent about fifty separate model simulations, the 

Bliss/11 experiments were executed over several weeks.   Each simulation required 

^S. Hobbs, current research. 
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FILE     NS Send     Avg. Avg.       Thru     7. Max 7. Max 
Prcrs      Rate     Rate Active      Ready    Rate     of FILE       "LEX" 

3 .119 .29 2.96 2.97 2.38 27.13 69.02 

5 .120 .20 4.41 0.79 3.20 38.40 64.00 

7 .126 .18 4.92 0.02 3.52 44.35 63.36 

8 .121 .18 4.85 0.00 3.29 39.81 59.22 

Figure 111-24. LEX Decomposition Results 

from four to thirty minutes of execution time for a total of about six hours of 

execution time. This amount of time was not particularly large since it is about the 

same amount of time that was required to obtein the Bliss/11 data originally. 

As detailed in Appendix C, these simulation experiments were statistically 

validated. Based on trial runs, message traffic flows and simulation run times were 

determined for eliminating initial condition bias in the subsequent experiments. Since 

there were many different simulation experiments, one was chosen for developing 

statistical confidence intervals. Thus, for the experiment using six processors and FIFO 

scheduling, the 907. confidence intervals computed were: LEX Computing Time, 

[.245^2641 Percent Thru, [84.6,88.5], and Thru Rate, [3.28,3.57]. Comparing these 

intervals with the results shown in Figure 111-13, it can be seen that each of the values 

falls within these respective confidence intervals (i.e, 2.59, 88.3, 3.28). 

These Bliss/ll experimental results should have several implications to system 

designers of a multiprocess Bliss/11 compiler. Foremost is the conclusion that there 

should be an increase in processing throughput of «bout four times over a sequential 

compiler. This estimated increase is significant in that it demonstrates both potential 

benefits and potential limitations in developing a (possibly) complex multiprocess 

Bliss/11 compiler. Given that the designer chooses to develop the multiprocess 

compiler, it can be observed that the compiler should not necessarily be designed to 
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dedicate a processor to each process. The simulated result shows that there Is en 

approximate linear increase in throughput when using a small number of processors, 

but after about two thirds of the number of potential processors are used the 

maximum throughput rate is almost achieved. The bottleneck was shown to be the 

lexical analysis phase of the compilation process. Finally, it was shown that simple 

scheduling disciplines (FIFO and most messages waiting) did not affect potential 

throughput .ate more than a random prociss scheduling technique. Thus these simple 

experiments using the STEPPS model and STEPPS system should provide information 

that would affoct the design of a multiprocess Bliss/11 compiler. 

III.C. Using STEPPS during system construction and tuning; Hearsay II 

The Hearsay II speech understanding system (HSII) [Fennell 75a, 75b, Lesser 

74] has been designed to utilize a variety of analysis sources to solve the problem of 

understanding human speech for performance of a lask [Newell 71]. The problem has 

been functionally decomposed so that individual subparts of the problem solution can 

be performed concurrently, with each contributing to the speech understanding task. 

The Hearsay II system is being implemented on both a uniprocessor, a DEC 

POP-10, and in a similar form on a multiprocessor, the CMU C.mmp. The uniprocessor 

implementation is structured as if it were being implemented on a multiprocessor, with 

a scheduler deciding on the actual order of processing. The C.mmp implementation 

. contains some design alternatives chosen to reflect restrictions due to the Hydra 

operating system [Levin 75, Wulf 74]. Some implementation issues are common for 

both machines since the systems are based on the same design. 



1II.C Using STEPPS  during system construction and tuning: Hearsay 11 111-29 

II1.C.1. Overview ol Hearsay II system erianlzation 

The following is a description of the organization of the HSIl system [Fennell 

and Lesser 75]^ 

...  The  Hearsay  II  speech-understanding  system 
(HSII) (Lesser, «t ol.  197*, Fennell,  1975} and Erman and 
Lesser,   1975)  currently   under  development   at  Carnegie- 
Meiion University represents a problem-solving organization 
that can effectively exploit a multiprocessor system.  HSU has 
been  designed  as  an AI system organization suitable for 
expressing   knowledge-based   problem-$olving  »trategiei  In 
which appropriately organized subject-matter knowledge may 
be represented as knowledge lourc« capable of contributing 
their   Knowledge   in   a   parallel   data-directed   fashion.    A 
knowledge   »ource   may   be   described   as   an   agent   that 
embodies the knowledge of a particular aspect of a problem 
domain and is useful in solving a problem from that domain by 
performing actions based upon its knowledge so as to further 
the  progress  of  the overall  solution.   It  Is  felt  that  the 
Knowledge  source is an  appropriate unit  for use  In the 
decomposition    of    a    Knowledge-intensive    task   domain 
Knowledge   sources, being  suitably  organized  capsules  of 
subject-matter knowledge, may be independently formulated 
as various pieces of the knowledge relevant to a task domain 
become  crystallized.   The  HSIl  system organization allows 
these various independent and diverse sources of knowledge 
to be specified and their interactions coordinated so they 
might cooperate with one another (perhaps asynchronously 
and in parallel) to effect a problem solution.  As an example 
of the decomposition of a tcsk domain there might be distinct 
knowledge sources to deal with acoustic, phonetic, lexical, 
syntactic, and semantic information. 

*  *  * 

... A production syttem is a scheme for specifying an 
information processing system in which the control structure 
of the system is defined by operations on a set of 
productiont of the form 'P' -» A', which operate from and on a 
collection of data structures. 'P* represents a logical 
antecedent, called a precondition, which may or may not be 
satisfied by the information encoded within the dynamically 
current sat of data structures. If 'P' is found to be satisfied 
by some osta structure, then the associated ociion 'A' may be 
executed, which presumably will have some altering effect 
upon the data base such that some other (or the same) 

\lsed with permission. 
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precondition becomes satisfied This paradigm for sequencing 
of the actions can be thought of as a data-directed control 
structure, since the satisfaction of the precondition is 
dependent upon the dynamic state of the data structure. 
Productions are executed as long as their antecedent 
preconditions are satisfied, and the process halts either when 
no precondition is found to be satisfied or when an action 
executes a stop operation (thereby signalling problem 
solution or failure, in the cace of problem-solving systems). 

*  *  « 

. . . The HSII system organization, which can be 
characterized as a "parallel" production system, hai. 5 
centralized data base which represents the dynamic problem 
solution state. This data base, which is known as the 
blackboard, is a multidimensional data structure which is 
readable and writable by any precondition or knowledge- 
source process (where * knowledge-source process is the 
embodiment of a production action). Preconditions are 
procedurally oriented and may specify arbitrarily complex 
tests to be performed on the data structure in order to 
decide precondition satisfaction. Preconditions are 
themselves data-directed in that they are tested for 
satisfaction whenever relevant changes occur in the data 
base, and simultaneous precondition satisfaction is permitted. 
Testing for precondition satisfaction is not presumed to be an 
instantaneous or even an indivisible operation, and several 
such precondition tests may proceed concurrently. 

*  «  « 

. . . The basic structure and components of the HSII 
organization may be depicted as shown in the message 
transaction diagram of Figure 111-25, The diagram indicates 
the paths of active information flow between the various 
components of the problem-solving system as solid arrows; 
paths indicating control activity are shown as broken arrows. 
The major components of the diagram include a passive global 
data structure (the blackboard) which contains the current 
state of the problem solution. Acce-.s to the blackboard is 
conceptually centralized in the blackboard handler module,^ 
whose primary function is to accept and honor requests from 

The blackboard handler module could be implemented either as a 
procedure which is called as a subroutine from precondition and 
knowled-p source processes, or as a process which contains a queue OS 
requests for blackboard access and modification sent by precondition and 
knowledge source processes. In the implementation discussed in the 
paper (i.e., Fennell and Lesser 75), the blackboard handler module is 
implemented as a subroutine. 
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the active processing elements to read and write parts of the 
blackboard. The active processing elements which pose these 
data access requests consist of knowledge-tourer procauei 
and their associated pr«condition$. Preconditions are 
activated by a blackhtard monitoring mechanism which 
monitors the various write-actions of the blackboard handler; 
whenever an event occurs which is of interest to ? particular 
precondition process, that precondition is activated. If upon 
further examination of the blackboard, the precondition finds 
itself "satisfied," the precondition may then request a process 
instantiation of its associated knowledge source to be 
established, passing the details of how the precondition was 
satisfied as parameters to this instantiation of the knowledge 
source. Once instantiated, the knowledge-source process can 
respond to the blackboard data condition which was detected 
by its precondition, possibly requesting further modifications 
to be made to the blackboard, perhaps thereby triggering 
further preconditions to respond to the latest modifications. 
This particular characterizatio . of the HSII organization, while 
certainly overly simplified, shows the data-driven nature of 
the knowledge source activations and interactions. 

III.C.2 STEPPS model of Hearsay II organization 

The STEPPS model was used to represent the operation of the individual 

processing components of the HSII system, the precondition (PC) processes and the 

knowledge source (KS) processes. In addition the data base (DB) blackboard was 

modeled as a set of synchrrnization locks similar to those presented in Section III.A.5. 

In aome cases locks cascaded, i.e i lock operation caused performance of two or 

more other locks.  The details of the STEi-FS HSII models are shown in Appendix B. 

Figure 111-26 shows a detailed description of the PC process actions and Figure 

111-27 shows the corresponding STEPPS graphic and system transition matrix notations. 

The essential common actions of a PC are modeled: wait for condition, examine DB, 

compute, possibly initiate a KS, and repeat. 

Similarly, Figure 111-28 shows a detailed description of the KS process actions 

and  Figure  111-29  shows  the corresponding STEPPS graphic  and transition matrix 



wmwppwfpw mwmvmmm mm* 

III.C Using STEPPS during system construction ind tuning. Hosrsiy U 
111-32 

5 t 1 
4 X 

t 
Ü or 

V 
k. 
D 

B
B

: 
n

o
d

e 
tr

u
c

t 

" 

Figur« 111-25. Simplified HSU System Orgen zation 



'— •«w     — ., m 

1II.C Using STEPPS  during system construction and tuning:  Hearsay II 111-33 

Precondition 

II: 

02: 
12: 
03: 
Iflh 

04: 
05: 

Wait for condition occurrence 
With probability pc wait for more condition occurrences (go to ID 

Perform DB read locK 
Wait for lock completion 
Perform read 
Wait for read completion 
Compute 
With probability pr perform more reads (go to 03) 
Perform DB unlock(s) 
Start up a KS (or set of KS's or no KS's) 
terminate processing (go to ID 

Figure 111-26. Description of Precondition Process 

t 
Ji 02      12"   03      13       04     05 

Precondition 

PC.I1-*    Il:pc,tD l02!l-Pc.W    ! Either wait for more messages 
c pc c     Pc    ! or DB read lock 

! Wait for lock complete 
! Perform read 
! Wait for read complete 

n, .    '    :04:1-Pr.ti n    ! Either read more or unlock 
ä-     SllSr '   « Start up KS(s); the time is processing ti 

! before restart 
! Wait for restart 

PC.02-     12:1.0 
PC.I2-      03:1.0 
PC.03-     13:1.0 
PC 
PC 

me 

PC.05-     11:1.0 

Figure 111-27. STEPPS Precondition Model 

notations.   The essential common KS process actions are  modeled:   wail  to start, 

examine data base, process, and possibly alter the data base. 

It can be seen from these descriptions that there are relationships between 

the   Precondition   processes   and   the   Knowledge   Source   processes.    These   are 

r.|.tion.hips whereby PC's send messages to KS's. In STEPPS, this is represented by: 

KS.I1«-KSLINK«-PC.05 1 Connect PC to KS through KSLINK 
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Knowledge Source 

U-      Wait for wake up 
02:     Perform DB read locK(s) 
12:      Wait for lock completion(s) 
03:     Perform read 
13:      Wait for read completion 

Compute 
With probability pr perform more reads (go to 03) 

04:     Perform DB read unlock(s) 
Compute 
With probability pj terminate processing (go to ID 

05:     Perform DB write lock(s) 
15:      Wait for lock comptttion 
06:     Perform write 
16:      Wait for write completion 

Compute 
With probability pw perform more writes (go to 06) 

07:     Perform DB write unlocMs) 
Terminate processing (go to ID 

Figure !II-28. Knowledge Source Process Description 

The model has been designed so that there is some decision process which 

chooses which PC will next receive notice to start processing. This decision process, 

called PCSELECTOR. is attached to the port 11 of each precondition. Figure 111-30 

shows the graphical relation between PCSELECTOR and the set of preconditions. A 

possible transition matrix for PCSELECTOR when there are n preconditions is: 

PCSELECTOR.Ox-01:p1;02:p2!  •  •  •  On:pn      for x-1,. , .,n 

The PC processes and KS processes interact with each other by reading and 

writing the data base. The data base accessing is an example of the Reader/Writer 

problem that was discussed in an earlier section. 

The Hearsay II system has been designed to allow the dynamic creation of KS 

processes. These processes perform their respective operations and then disappear. 

Since  the  STEPPS  model  was not designed to allow for  this facility, it  must  be 
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JJ 02      12      03     13      04     05     15      06      16      07 

Knowledge Source 

! Transit 
KS.I1-» 

KS.02- 
KS.I2- 
KS.03- 
KS.I3- 

KS.04- 
KS.05- 
KS.I5- 
KS.06- 
KS.I6- 

KS.07- 

lon matrix Nex» step 
02:1,1, ! tj represents computation time before 

! doing read lock 
I2:i.o ! Wait for read lock completion 
03:1.0 ' Perform read 
13:1.0 ! Wail for read locK 
03:p , t   ; Msl-Priti-o   ! Either do more reads or perform unlock 

r'  P'' Pr ! Thr times can be different 
Up. t   ; 0B:1-Pt.ti 0     I Either terminate or perform write unlock 
15:1 6Pt *    ! Wait for write lock 
06:1.0 ' Perform write 
Ig-l o ! Wait for write complation 
06:pw,tp  ; 07:l-pw,t1.p  I Either write more or unlock 

11:1 ! Wait to restart 

Figure 111-29. STEPPS Knowledge Source Model 

PCSELECTOR 

02 

±. 
PC, 
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KS 

Figure IH-30. PCSELECTOR process 
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approximated. The method is to allow a fixed number of instantiations of a single KS 

to act as a pool of KS's. These KS's compute in-parallel since different copies of the 

KS can accept messages from their entry linK (Figure 111-31). Thü model performs as if 

there were some maximum number of KS's of each type allowed. When a suitable 

number of copies of a KS are available the limit will not affect performance. 

4L 

KS. KS, KS: 

Figure III-31  Set of identical Knowledge Sources 

III C 3 Performance questions pertaining to th« HSII model 

The model of HSII emphasizes implicit interprocess communication via data 

directed processing. This communication is the basis for interprocess interference 

which occurs either when processes are blocked when attempting to perform a data 

lock or when a process waits for the occurrences of actions of another process 

(modeled as waiting for a message). 

The following are pertinent questions for structuring of the Hearsay II system: 

1. How much of the data base is locked and when? 

2. What is the expected interference due to the locking? 

3. How do various locking strategies compare? 

4. Should a PC start up a set of KS instantiations sequentially, In pirallel or 
in groups? 

5. How many processors are needed? 

6. What are the effects of alternate scheduling algorithms? 



         "'I    M« l'IHWA 

IILC Using STEPPS  during system construction and tuning: Hearsty 11 111-37 

7. How cai the processing load be balanced among available processors and 

with respect to the data base? 

8. Is there a particular number of processes that should be dedicated to KS'a 
and anothsr number that should be dedicated to PC's? 

The ultimate goal is to be able to solve the speech prob'&m In the least amount 

of real time. The questions relate to the goal in that they provide an understanding of 

those places where Hearsay II is performing well and poorly with respect to 

interprocess activity. 

III.C.4. Application of the STEPPS system to Hearsay II 

The STEPPS system was used to analyze a Hearsay II phenomenon discovered 

by Fennell [Fennell 75a, 75b]. He appended a multiprocess simulator to a version of 

the developing HSII system and measured the processing performance under several 

multiprocessor configurations. One of the parameters of interest to him was the effect 

of locKing on the the throughput of the multiprocessing system. Throughput is 

important to the speed with which the HSII system would perform the speech 

understanding tasK.  Measures of throughput that he used were: 

1, The average number of active processors, and 

2. The average number of inactive processors. 

One  of  Fennell's  results was that when locking was used, to insure data 

integrity and to prevent deadlocks, he obtained a measure of throughput averaging 

4.16 processors with 16 processors available.  However when the locking structure of 

the simulation was turned off^ the average number of active processors was found to 

be   11.84.    Fennell  did  not  explain  this  phenomenon, but  noted  that  the  locking 

interference had a significant effect on effective parallelism [Fennell 75a, 75b]. 

^The'removVl of the locking, as reported by V. Lesser of the HSII researchers, does 
not affect data integrity since the locking used in Fennell's simulations concerned 

independent fields of nodes. 
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The STEPPS system was proposed as a tool to analyze this phenomenon. The 

motivation was twofold. First, the locking/no locking problem indication of close to 

threefold processing utilization deterioration was important enough to analyze. 

Second, this problem appeared to be a practical application of some of the STEPPS 

^cilities^ A factor that added to the appropriateness of the STEPPS model was that it 

is e^sy to model a data driven organizational structure, like HSII. One issue for 

investigation was whether the probabilistic approach to modelling interprocess 

communications was sufficiently powerful to reproduce the phenomenon found using 

Fennell's simulation. If successful, the STEPPS model could be modified for 

representing costly HSII system modifications, and predictions could be made of their 

effects on HSII performance. 

A brief discussion of a pertinent part of the locking algorithm follows (See 

[Fennell 75a] for complete details). The data base consists of a set of nodes arranged 

in a two-dimensional structure. Along one dimension are 9 categories called lexical 

leveh. The second dimension represents uiieronc« limo and is divided into 30 distinct 

units. Thus a node exists in a lexical level at a given utterance time. Nodes can be 

grouped into lim« ragion, covering all nodes on a single lexicon level occurring 

between time a and time b {o i 6). Locks can be performed on individual nodes or on 

regions—locking all nodes within the regions. 

In order to prevent deadlocks, locking is performed in a hierarchical manner 

using specified conventions. The hierarchy is that locks occur in the order: by lexical 

level and then by increasing time. Each process performs all of its locks, performs 

some processing, and then releases all of its locks. There can be no deadlocKs since 

all required data nodes must be available before any processing occurs and all nodes 

♦it was not originally recognized that some limitations of the STEPPS system would 
also be identified.  This will be discussed later. 
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are released before any new locks are performed. In addition, when two processes 

attempt to lock the same pair of nodes (possibly among other nodes as well), they can 

not mutually block each other since they both must perform their locks in the same 

order. 

An additional attribute of the HSII locking convention is that a process 

maintains a lock on a node until it releases all of its nodes. This means that if a 

process locks node A but is blocked f^om locking node B, it waits for the release of 

node B before continuing and maintains its lock on node A while being blocked. This 

' method guarantees that each process will eventually complete its required processing, 

but the method can cause a third process to be blocked unnecessarily if It only tries to 

lock node A. 

HI C 5 The STEPPS simulation of the locking problem 

An analysis of the Hearsay II knowledge sources and preconditions was 

performed to determine the parts of the blackboard examined by each process type. 

By executing the HSII prototype system in a sequential mode with data collection 

features turned on, members of the HSII development tearrr generated data that was 

analyzed to determine proper probabilities and computit^n tines W".GJ In the STEPPS 

model of HSII. 

Due to the STEPPS sysf-.; overhead, ihe complete set cf por-ibls >jckinfc 

structures could no: be mocV'-iO. Thus tS ^f^PPS modal of HS);. rop-L»x;mifed ?h»i 

locking structure. For in« sctulation of HSII it was dolermntvd tli» locking -jccurrftd in 

only 23 ways witn resptct to iextcon le...». Figure «11-32 shows the mktrix 

representing these lo;*s  and vhich oro^csses performed the locks.   Each process 

Special appreciation is ackncwl' Jgtd to V. Irsser, R. Fennell, and G. G»'!. 



iw-- 

III.C Using STEPPS  during system construction and tuning: Hearsay 11 1IM0 

could choose from among its possible locks (as shown in the table) uniformly as the 

current locking set for the process. 

Lock Lexicon Lock   Lexicon 
No.   Levels Locked No.     Levels Locked 

1. WORD + WROSURIM 13. PHON + PSEG 
2. WORD + WRDSURN + BURN 14. PSEG + SEG 
3. WORD + SURN + PHON ♦ MXN 15. SHDSENT 
4. WRDSURN ♦ SURN + PHON 16. SHDWORD 
5. WRDSURN + SURN 17. WORD 
6. SURN ♦ PHON * MXN ♦ PSEG 18. WRDSURN 
7. SURN + PHON ♦ MXN 19. SURN 
8. SURN + PHON 20. PHON 
9. PHON + MXN ♦ PSEG 21. MXN 
10. PHON + MXN 22. PSEG 
11. MXN + PSEG+ SEG 23. SEG 
12. MXN ♦PSEG 

Process\Lock   1  23456789 1011121314151617181920212223 

xxxxxxxxx 

X 

X X 

X   X 

PREIRPOL 
KSIUV X X         XX        XX X XXX 

PREIPSYN 
KSIPSYN X X        XX 

KSICSEG X X         XX 

PREIPSC X                    X 

KSISEARCH X   X   X   X   X   X   X X 

KSITIME X   X   X   X   X   X   X X 

PREIUTTB X   X 

KSIUTTB X   X   X   X   X X 

PREISEG 
KSISEG 
PREIALO X 

KSIALO X X               X 

X   X 

X 

Figure 111-32. Hearsay II Locking Structure Matrix 

The thrust of the simulation experimsnt was to reproduce Fennell's results 

using a probabilistic model. Appendix B contains definitions of the probabilities used 

for the simulation. The first question of interest was how the simulation performed 

with locking vs. without locking. 
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The individual time divisions for locks also contribute to locking Interference. A 

second interesting question was how the region sizes affected simulated interference. 

The STEPPS system posad an overhead limitation on what could be modeled and so 

hindered answering this question. Specifically, it was not possible to represent locking 

in all of the 30 possible divisions (4680 possible regions). Instead each lexicon level 

was considered as a single region and decomposed into subregions in successive 

experiments  until  the  overhead of  running  the STEPPS  system overwhelmed the 

computer. 

The parameters that could easily be altered for the system simulations were: 

the existence of locking, 

the number of subregions for each region, 

the number of processors available, and 

the probabilities that the processes performed their locks. 

The region locks for each process were formed by examining the program 

structures for each of the modeled processes. The probabilities used by a process to 

choose locking structures were assigned uniformly over the possible locks. The times 

between locks and the time for a lock to take place were taken from the HS1I system 

data. 

Several models of the system were simulated and representative results are 

shown in Figure 111-33. The results demonstrate that with no process interference 

there can be 12.26 processors active on the average. This corresponds to the results 

found by Fennell's simulation of the entire HSU system. The second set of results 

(with locking) shows that when the region locking interference is introduced there is a 

dramatic decrease in parallel processing. As the regions were further decomposed, 

parallel processing did not substantially change. 

Ve ran out of memory at 200,000 words on the POP-10. 
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Locking Strategy Avg. Active Subreaions Total LpcKs. 
No locking interference 12.26 9 23 
With locking 3.11 9 23 
Subregions MXN(2), PSEG(2) 3.06 11 53 
Subregions MXN(2), PSEG(2), PHON(2) 3.27 U 75 
Subregions MXN(2), PSEG(3)I PH0INK2) 3 11 13 85 

Figure 111-33. Hearsay II Representative Results 

As discussed in Appendix C, the statistical validation of these results, based on 

the elimination of initial condition bias, was accomplished by performing trial runs of 

the Hearsay II model to deterime subsequent simulation experiment run times. 

Confidence intervals were not determined for the statistics presented sim.e 

accumulated statistics (i.e., average active processors) requires multiple simulations 

[Gordon 69] which were felt to be too expensive. Moreover, the STEPPS Hearsay II 

simulation results were correspondences to Fennell's simulation experiments, which 

were also not validated [Fennell 75a]. 

The STEPPS simulation results demonstrate that the probabilistic approach can 

be used to model the Hearsay II multiprocess communication structure. Both the 

Fennell and the STEPPS simulations indicated about a threefold decrease in a measure 

of processing throughput due to locking. In addition, the relatively simple STEPPS 

model indicated that the granular locking structure used by Hearsay II may not be 

necessary. 

III.C.6. Reflections on the STEPPS Hearsay II simulation 

The STEPPS system's use as a tool for examining the Hearsay II process 

structure was successful In that STEPPS adequaoly represented major interprocess 

communication dependencies and proauced results reflecting on the Hearsay II system 

mm 
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structure.   The probabilistic approach applied within the STEPPS structure and the 

approximations to the actual implementation were sufficiently powerful to reproduce 

Fennell's result and indicate an area for HSII system modification.   Another significant 

observation was that the deta used to reproduce the Fennell result came from a 

sequential operation of HSII and yet yielded appropriate predictions concerning the 

multiprocess HSII system. This observation implies that the HSII multiprocess structure 

does not produce a large amount of interprocess assistance (or interference) over the 

STEPPS multiprocess model that contains no direct interprocess assistance. 

Some  further  simulation experiments  might  have been useful  for studying 

Hearsay II.   However, during the STEPPS simulations the Hearsay II system process 

structure  was   altered.    These  modifications   included  the  replacement   of  several 

Precondition and Knowledge Source processes with new versions which resulted in an 

increase in the total number of processes.   To incorporate the Hearsay modifications 

would have required the collection and analysis of data from Hearsay and the creation 

of a new STEPPS model.  The cost in computer time and analysis effort was too large 

during the period that the simulations were performed.   Experiments that might fwe 

been useful are: 

Restrict the number of available processors instead of using the maximum 
possible. 

Modify   the   process  structure  to  use   many  simple  Precondition   and 
Knowledge Sources. 

Increase the number of subregion locking beyond that used. 

An additional limitation to performing these simulation experiments was the 

STEPPS system itself, since prototype limits of the STEPPS sys'em were reached when 

the Hearsay II simulation mode' exceeded available PDP-10 memory. 

Even  considering  the  previously discussed  limitations, the  STEPPS system 
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application to Hearsay II was significant. First, the STEPPS model could easily 

represent the non-trivial HSII communications structure. Part of this ease was due to 

the HSII data directed process organization of interest in the experiment being well 

suited to the probabilistic nature of STEPPS processes. The application demonstrated 

that the data collected during a STEPPS simulation1 was sufficient to provide the 

required results.* Finally, the STEPPS system could really aid the HSII systems 

developers in tuning their system by providing a relatively simple framework to 

examine the consequences of paramster changes (e.g. probabilities and timing) in 

addition to structural changes. 

■^See Chapter V for details on simulation data collection and parameters. 

♦This can also be stated for the Bliss/11 application. 
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Chapter IV 

Analysis of a STEPPS Model 

A STEPPS model of a program can be analyzed to predict some of th« 

program'? performance properties. Unless a model is analyzed and certified as safe, a 

program that is constructed, based on the model, may be useless. It is sometimes 

valuable to exploit the similarity of the STCPPS model to Known models for application 

of known analysis techniques; thus we begin with n review of these models and 

techniques. 

IV.A. Markov and semi-Markov processes 

The model of a process described in Chapters I and II is essentially a 

description of a semi-Markov process [Howard 71 vol. 1 & 2]. A discrete-time Markov 

proceu is a probabilistic system composed of a set of states, a designated current 

state, and a probabilistic rule for changing between states. The basic rule for a 

Markov process is that the probability of a transition between the current state and 

any successor state is independent of any past history. Let {l^^ be the set of 

successive events and let the finite set {X^^ be the possible state values^ Then 

the Markov assumption is formally: 

P<En+l " *k I Ef - Xjt. t - 1... , n) - P(En+1 - Xk | £n - X^). 

The probability that the next event, En+1, is a particular state, Xk, is only dependent 

on the last event X^.  When finite state processes are studied, the probabilities are 

In  general  the  state values could be an infinite set, but this research  is only 
concerned with finite state processes. 
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sometimes chosen to approximate known distributions to facilitate analysis. In all 

cases, the sum of the probabilities of transferring from a particular state to the set of 

next possibilities muf' be 1. 

A Markov process may be composed of chain* of states. A chain is a set of 

states such that once the process enters one of the states of the set the only other 

states that the process can enter are in that set. In general, a process may have more 

than one chain and whichever chain is entered first determines how the process will 

eventually perform. The analysis and operation of a process with more than one chain 

is dependent on the process's initial state. A process with only one chain is called a 

monodenmic proceit. 

For a monodesmic Markov process it is still possible that some states do not 

recur. This happens if the process can ever reach a state such that the probability of 

ever reaching some states is zero. States that can not recur in ueady itate are 

called ironxMnt »täte». Informally, a transient state is a state of a process that can 

only be entered between an initial state and a chain. 

Example IV.A-1 

Figure IV-1 (a) shows the transition matrix of a Markov process with 
two chains. The states of the process are w, x, y, and z. If the process 
is initially in either state w or x then the only states that it can ever 
enter are w and x. However if the process is initially in either state y 
or z then if can only enter states y or z. Thus the process has two 
chains. No states are considered to be transient since all of the states 
are in some chain. 

Figure IV-1 (b) shows the transition matrix of a monodesmic process 
having two transient states. The states of the process are a, b, c, and 
d. The chain is composed of states c and d since once they are entered 
no state other than either of them may be entered. In addition states a 
and b do not form a chain since the process may eventually enter the c 
- d chain from a and b. If either a or b is an initial state they may 
recur many times, but eventually the chain will be entered and then it 
will be impossible to enter either of them again. 

^Steady «tat« is defined to be the operation of the process after some suitably large 
number of transitions. 
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w X y z 
w p l-p ö Ö 
X q 1-q 0 0 

V 0 0 r 1-r 
z 0 0 1 0 

(a) Two chains:  (w,x) (y,z) 

a 
0 p l-p    0 
q 0 0    1-q 
0 0 0      1 
0 0 10 

(b) Transient States:  a and b 

Figure IV-1. Markov Processes 

Markov processes have been studied in order to solve problems such as: 

What is the expected number of transitions before entering state S? 

What   is  the  probability of entering state  S  from state T: (1)  in  m 
transitions? (2) in m or fewer transitions? (3) ever? 

In steady state, what is the probability of entering state S on the next 

transition? 

The last question points out one example where steady state activity is considered 

important. For monodesmic processes the initial state is unimportant, but the activity 

of processes with multiple chains is strongly dependent on the initial state since as 

shown in Example IV.A-1 a process can behave quite differently in steady sUte 

depending  on  how  it  was  initialized.   For  this reason most  models using Markov 

processes are monodesmic. 

This research is also concerned with the stead-, state properties of a 

multiprocessing program. Transient states create difficulties in analyzing data flow in 

the steady state of a multiprogramming model because It is possible that a process will 
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r^ver reenter a transient slate. The STEPPS model is restricted to disallow processes 

with multiple chains and transient stahs because ihey do not contribute to the steady 

state of a process. The STEPPS sysvim is able to analyze a process and determine 

whether these restrictions have been met. The algorithms (or performing this antlysis 

are discussed later in this chapter. 

A $emi-Markov procen is a generalization of the Markov process model. In a 

Markov model, one unit of time elapses between successive transitions in all cases. In 

the semi-Markov model, the time taken between successive transitions depends on the 

particular transition. In the model's most general form, the time taken between any 

two successive states can be a random variable; in the STEPPS model this serves no 

useful purpose, so the time taken between any two particular transitions is a constant 

depending only on the two states, in fact, the real time between transitions In a 

STEPPS model is usually not completely predictable since a process may be forced to 

wait as discussed in Chapters I and II. 

Some problems that have been studied using the semi-Markov process models 

an: 

What is the expected process time between entering state S and entering state 

T? 

What is the expected process time between recurrences of state S? 

In steady state, what is the expected percent of time spent in state S? 

Again, the last question is the most interesting one for the STEPPS model. 

There is not always an accurate result for a STEPPS model because processes in the 

STEPPS model are not semi-Markov due to the essentially unpredictable^ wait time. 

However an estimate of the type of activity that a process will be performing when it 

is executing is 'till a useful result. 

^The wait time is unpredictable for a given process when considering the process 
independently of the entire model. 
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The theory tells us that it is possible to predict the steady state probabilities 

of which state will be entered next, not knowing the present state. This means that it 

it possible to create a representative transition matrix such that each row is the same, 

I.e. the choice functions are all the same when the most recent state is unknown. 

These probabilities also reflect the probability of being in each of the states after a 

large number of transitions. 

The steady state probabilities can be determined analytically by solving a set 

of n*I linear equations in n unknowns. Let ST,, 1-1, . . . , n be the steady state 

probabilities of the process and let pitj be the probability of entering state j from 

state i In one transition.  The equations to be solved are: 

STi-p1(i*ST1+... + pn(i«STn       fori.l,....n 

1 - ST! + ST2 ♦ •. ■ + STn 

The first n equations are redundant, so the solution requires replacing one of 

the first n equations with the last equation. The system of equations will be solvable 

since the matrix describes a monodesmic process with no transient states^Howard 71 

vol. 1J  Otherwise the equations do not have a unique solution. 

The analysis that has just been described is one of the Markov theoretical 

analytic techniques that can be applied to the processes of a STEPPS model. The fact 

that the STEPPS model processes are similar to semi-Markov processes is only useful 

if a system designer wants to analyze components of a STEPPS model in this way. In 

most cases, Markov and semi-Markov tnalysis of STEPPS processes is of limited 

usefulness since the STEPPS processes are only components of a larger model and the 

transition matrices do not entirely reflect the operation of a process. 

In order to represent analytically an entire STEPPS model, all possible states 

^his is guaranteed by the STEPPS system. 
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(In the Markov process sense, rather then STEPPS) must be Included in the enelytic 

description. Not only must every STEPPS state be included as enolylic states, but also 

analytic states must be introduced to represent the operations of the STEPPS links. 

The effect is the creation of a matrix representing at least N squared states (where N 

Is the sum of the number of STEPPS states in each STEPPS process). Not only is this 

model complex, it requires the introduction of probabilities (and associated times) for 

some new, potential Markov slate changes. 

IV.B. Well-formed STEPPS models 

As noted in Chapter I, in order for a STEPPS model to be useful it must meet 

certain restrictions and be designated as a uell-formei model. Earlier in this chapter 

it has been pointed out that each process in a STEPPS model must be monodesmic and 

have no transient states (termed well-formed procen). An additional restriction 

guarantees that a model represents a data flow which can be simulated and which can 

reach steady state if simulated for a sufficient period of time. Hence other restrictions 

to the model (termed well-formed graph) are that all links must be attached to both 

input and output ports, that all ports be attached to links, and that the graph be 

connected. If these restrictions were not imposed then some process would eventually 

request messages from an empty link or try to send messages to a link whose message 

limit has been reached. 

IV.B.l. Monodeamic and transient state well-formed criteria 

Let the N states of a proves' be identified by the integers 1 to N. Let the 

probability of state j succeeding state i be Pjj, the entry in an N by N transition matrix 

P. 
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In order to test whether a process is monodesmic and has no transient states it 

is sufficient to determine whether the probability of each state transferring to each 

other state in N or fewer transitions is greater than zero. The first step is to form a 

tramition relation matrix, C, representing a relation between states, defined by Cj i ■ 

0 if Pj: - 0; and 1 otherwise. The next step is to form the transitive closure of the C 

matrix, which describes whether there exists some succession of connections between 

any two states. If the closure of C is all ones then every state is able to transfer to 

every other state and so the corresponding process is monodesmic and has no 

transient states. 

There are several algorithms for forming the transitive closure of a relation. 

One method to form the closure, as shown by Prosser [Prosser 59], starts by forming 

Boolean powers of the matrix to show whether a transition can occur in two or more 

transitions. The i,j term of the Boolean square of a matrix is the Boolean expression 

(logical sum): 

<c2)i.j - A-l Ci(kCK( 

CL  :   -   1. The i,j term is equal to 1 if and only if there is some K such that Cj ^ - C^ 

Similarly if the N-th power of the matrix is formed, a 1 in the resulting matrix 

represents that a transition can be made in N steps. If a Boolean sum is taken of the 

first N powers of C, then the resulting matrix represents whether a transition can be 

made in N or fewer steps. This matrix is the closure. (Other, more efficient, methods 

for forming the closure of a matrix are known [Warshall 62].) 

IV.B.2. Well-formed graph structure criteria 

Three basic structural properties are necessary for a well-formed STEPPS 

graph model.  They are: 
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1. Each port is attached to a link. 

2. Each link is attached to at least one input port and one output port. 

3. All nodes are connected to each other via some set of paths, i.e. the graph 
is not disjoint. 

The last property means that for any partition of the nodes of the graph into 

non-empty subsets of nodes, there will exist at least one connection from some node 

in each subset to a node outside of that subset. 

The first two properties are verified by examining each node of the graph and 

checking the connections to the node. The third property is determined by first 

forming a node connection matrix NC where ncjj - 1 if node i is connected to node j or 

if node j is connected to node i; 0 otherwise (ignoring that the graph is directed). As 

before, the closure of the NC matrix is formed. If the closure contains all ones, then 

there exist connections between every pair of nodes. 

IV.C. Deadlock structures and situations 

The nature of communication dependencies can create problems for a system of 

interacting communicators. The basic problem in a STEPPS model is that processes can 

achieve states such that at least one process will never be able to change state 

because it is waiting to activate its associated port; this is called the deadlock 

prohUm. In some STEPPS structures a deadlock problem may be so severe that no 

process can ever change state and no further processing of any kind is possible. On 

other structures some subparts may still be able to continue processing (possibly 

incorrectly).  A structure that is completely deadlock free is defined to be  10/e. 

Either of two views may be taken when examining a structure for deadlocks. 

The first view is that a structure must not con.ain any chance of an occurrence of a 
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deadlock. Th. second is that a process may have deadlocks as long a. it It possible to 

identify how the deadlocks occur and the probability of their occurrence. The term 

-deadlock" in the STEPPS model refers only to communication structures which can not 

be removed other than by restructuring a model. In practice other methods, e.g. .« 

restarting a process after an unusually long delay, are sometimes used In system« 

where deadlocks can occur. 

The deadlock problem has been studied extensively along several dimensions. 

The survey by R. C. Holt [Holt 72] examines many of the deadlock problems.   Most of 

the deadlock algorithms are oriented toward solving problems concerned with resource 

requests from a pool of resources.   Holt presents a graph model of the resource 

problem  and  a set of graph reductions to determine whether  a modeled system 

contains deadlocks.   The difference between the STEPPS solution and his is that Holt 

limits his analysis to necessary conditions (cycles) and sufficient conditions (a knot^) 

for the existence of a deadlock.   He does not report on the solution of the general 

problem.  Several problems that have been solved have been concerned with reusable 

resources.  The STEPPS model does not consist of reusable resources since messages, 

which are the resources in STEPPS, need not be preserved.   The STEPPS model is 

somewhat different from the models that have been examined in paut resee-ch, so the 

deadlock problem has been examined and solved (with a few restrictions) for the 

STEPPS model. 

The following sections present some structures and situations that can cause a 

STEPPS model to deadlock. These examples are not necessarily independent nor 

complete, but they demonstrate some types of deadlock structures. 

^ÄVnöri'rrs'ubs'eToV nodes of a directed graph such that each node is attached to 

the other. 
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IV.C.l. Initial condition incompatibility 

It is easy to create a structure that is safe for some initial states of the 

components of the structure, but not for others. The possible problems are that data 

are not available where required or that the system contains too much data. For 

example, all output ports that are initial states might be attached to links that are 

initially at capacity and all initial input ports might be attached to empty links. It is not 

necessary for such a condition to occur before execution begins; the condition may 

also occur after only a few state transitions. An example of initial condition deadlock 

is shown in Figure IV-2. In this example process C is waiting for a message from B 

and process B is wailing for a message from C. Process A will always be waiting to 

send a message. 

A 
B 

* 

■> 
el T\ 

0 
V 

1 
1 

I 
vo 

■■ 

vo 

Figure IV-2. Improper initial condition 

IV.C.2. Loops 

A loop is defined to be a path from an output port, 0X, of a process to an input 

port, Iy, of that process with no connections along the path between them going to the 

original process. When each node in a loop is connected only to other nodes in the 

loop, the loop is called a doted loop. 
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If »ny port Of any proc.ss nod. is .m«*d..t.-rwufr.nt (including the nodes et 

either end), then It is possible thet the port could send (or request) «Ira messepes. A 

solution to this desdlock problem is IM both . SN<t and a SOURCE* must be attached 

to nodes in the loop. Thus the loop cannot be «M when Ihm i. an immediate- 

recurrent state within it (Figure IV-3). 

A loop that is not closed and does not have both a SIW and a SOURCE 

attached to nodes in the loop may conta.n deadlocks because it may be possible for a 

message to be shunted to the SINK or any other process not in the loop. Similarly, 

extra messages entering a loop from a node not in the locp en mm a link to become 

filled with extra messages. 

A 
01. 

ii 

g _i M 

01* 
B 

A 11  01 

1_ 
■p 

i 

11* 
01 

B 
11 
01* 

0 1 
1 0 

11    0 
p 1 
1   ( 

Figure IV-3. Loop with immediate-recurrent states 

^A SINK is process whose only port is an input port. 

*A SOURCE is a process whose only port is an output port. 
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IV.C.3. Incompatibl« taquanc«« 

t i. When a data path can be recognized as a cloud path, it is possible to 

determine the number, N, of messages required to enter this path in order for any 

messages to be available at the linK attached to th J end of the path. It is also possible 

to determine the number, M, of messages that will be available at the end of the path. 

The link attached to the end of »he path may require a certain number of messages, L, 

before the input to the next path attached to it can yield any massages. If M does not 

at least equal L and if N, M, and L are finite then the system can deadlock. It also must 

be true that fewer than 2N messages enter the path before a response is required 

from the path.  Figure IV-4 shows an example of this. 

(NJ    AIM] ^ (LI    B 

Figure IV-4. Incompatible Sequence 

IV C 4 Split paths that do not join properly 

A data path may split in two ways. V, a link is attached to more than one input 

port, messages that reach the link may go down either path. If the paths join again at 

two different ports of the same process then it may be possible for an insufficient 

number of messages to enter one of the paths and thus force the merging process to 

wait for data that will never come. Figure IV-5 shows this situation, where processes 

A and B send messages to C and C must receive a message from one before receiving 

a message from the other. 

^A dosed path is a path between two nodes such that all nodes In the path are 
attached only to other nodes in the path. 
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X. s. A 

C 
• 

» 

"•w B 

Figure IV-5. LinK split paths 

The second way in which data may go down alternate paths occurs when ■ 

process sends data along two different paths that eventually merge. If mora data can 

go down one path than can be received by the port at the end of the path then this 

path will eventually fill up with messages. The two processes must be exactly 

synchronized as to their data dependencies. Figure IV-6 shows this situation. Every 

message sent by A from port A.01 must be accepted by B.I1 and the same Is true for 

A.02 and B.I2. 

s*. 01 ■>» 11  ? 
• 
• A B 
• 

02 "■». 12 

Figure IV-6. Process split paths. 

IV.D. Reducing a STEPPS model 

Under certain conditions it is possible to determine whether a STEPPS graph 
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model is deadlock-free. The conditions are that the graph be well-formed, initial 

process states be ignored, and the initial number of messages and queue size limits be 

ignored. The method used to determine whether a graph is safe is to apply a set of 

graph reduction». These reductions will be shown to reduce all safe graphs to other 

safe graphs and to reduce all unsafe graphs to other unsafe graphs. In addition, it will 

be shown that one of the reductions is always applicable to a safe graph. Thus, the 

reduction process may be repeatedly applied until either an empty graph or an 

irreducible graph is reached. When an empty graph is produced the original graph is 

safe. When an irreducible graph results, then the original graph can generate a 

deadlock. 

There are four graph reductions that can be applicable wnen certain conditions 

are met: 

Rl:     Combine two adjacent processes. 

R2:     Eliminate states of a single process. 

R2a:   Combine two ports of the same type, attached to the same link, to 
become one port. 

R2b:   Eliminate ports of opposite type connected to the same link. 

R2c:   Eliminate ports attached to SOURCE/SINKS. 

R3:     Combine two processes that are in-parallel . 

R4:     Eliminate all SOURCES, SINKS, and unattached links. 

Graph Reduction Process:   The first three reductions are applied iteratively 

until none is applicable and then the last, R4, is applied.   If the result is an empty 

graph then the model is safe; otherwise the model is unsafe.   The reduction process 

sometimes converts the graph into disjoint parts, and this is necessary to the reduction 

process. 

*Two processes are in-parallel when each process has exactly one input port and one 
output port and the input ports of the respective processes are connected to the same 
link and the output ports are connected to the same link. 
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The reductions are based on potential interprocess communications. Since a 

process tranntion relation matrix represents the presence or absence of possible 

interprocess port activations, it will be th^ vehicle used to demonstrate that the 

reductions maintain process legality. Thus by proving that the transitive closure of a 

resultant transition relation matrix is entirely 11, each reduction is demonstrated as 

producing resultant processes that are monodesmic and have ro transient states. 

IV.D 1. Rl: Combine adjacent processes 

Two adjacent proeeuet* are combined when it is determined that their data 

manipulation functions can be replaced by a single process. It will be demonstrated 

that the combination of two adjacent processes in an unsafe graph will not convert the 

graph into a safe one. 

Rl is applicable in two situations: 

Rla:   neither of the adjacent ports is immediate-recurrent and they repeat 
the same number of times. 

Rib:   one of the processes is a DELAY™. 

For Rla, the two processes are combined and the link between them is eliminated.  For 

Rib, the DELAY and the link between the processes are eliminated.   Rib is a trivial 

case where the DELAY is functioning as a link.   The remainder of this subsection is 

concerned with Rla. 

Rla relies on the assumption that each of the two adjacent processes will 

^Some representative probabilities can be assigned to the resultant processes, but 
these will not be presented since they detract from the clarity of the explanation of 

the reductions. 

*Two processes are adjacent when they contain adjacent ports. 

t+A DELAY is a process with only two ports, an input port and an output port, 
provided neither port is immediate-recurrent. 
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eventually enter the states of their adjacent ports. The situation can be modeled as 

one where the process containing the output port sends a message to the other 

process (and waits), and this second process computes until It requires another 

message from the first process. Then the first process computes until it reenters the 

original state. In this way, both processes are able to chanro state if one can (when 

the graph is safe). The transition relation matrix of the combined process is formed by 

a construction that (i) eliminates the adjacent ports and (ii) unites the successors of 

states that immediately preceded an eliminated state of one process with the 

successors of the state of the second process. In this way the new combined process 

is still nonodesmic and without transient states since each state is still able to enter 

each other state, but now may go through states of what was formerly part of a 

different process. 

The new transition relation matrix is formed in the following manner. Let the 

ports A.e and B.f be adjacent and let neither state be immediate-recurrent. Let A.x, 

A.z, B.y and B.w be other ports of the two processes. If the new combined process is 

called AB, then c'tAB^ABz) ■ c(AxAz), c'(AB.y,AB.w) ■ c(B.y,B.w), c'(AB.x,AB.y) ■ 

c(A.x,A.e) ^ c(B.f,B.y) and c,(AB.y,AB.x) a c(B.y,af) A c(A.eA<)* 

Lemma Rl.l: If A.e succeeds Ax and B.y succeeds B.f, then AB.y succeeds 

AB.x, i.e. c'(AB.x,AB.y) - 1. 

Proof: A.e succeeds A.x means c(A.xAe) - I «"d B.y succeeds B.f means 

c(B.f,B.y) - 1.  Therefore c'(AB.x,AB.y) - c(AxAe) A c(B.f,B.y) - 1 A 1 - 1. 

Lemma Ri.2: If B.f succeeds B.y and A.x succeeds A.e then ABx succeeds 

AB.y. 

f The meceitor «10101 of a state are those that can be entered in one transition. 

*c(s,t), a transition relation matrix entry, is defined to be the presence (1) or absence 
(0) of probability of entering state t from state s. c'lw.u) is a transition relation matrix 
after the application of a reduction.  All operators ( A and v ) are logical operators. 
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Proof; As in Lerrmi Rl.l. 

LBmma BU' T^re exi8U 8 sequence ^ tr>n6i,ions ,r0m Aa* t0 AB-y- 

Prsaf: Since A and B are assumed to be legal STEPPS processes, their 

respective transitive closure transition relation matrices are all 1's. As a property of 

transitive closure, this means that there exists a sequence of transitions from A.x to 

each predecessor of A.e and their re:,ective similar states in AB. Similarly there 

exiats a sequence of transitions fron, successors of B.f to B.y and their respective 

similar states in process AB. By Lemma Rl.l and the above, there exists a sequence of 

transitions from AB.x to each corresponding successor of B.f and thus to AB.y. 

Lemm, B1A There exists a sequence of transitions from AB.y to AB.x. 

Proof:  As in Lemma R1.3. 

Lemma Rlü:  Process AB is a legal STEPPS process, i.e. the transitive closure 

Of the corresponding transition relation matrix is all I's. 

Proof;   By Lemmas R1.3 and R1.4. there are sequences of transitions between 

each slate  that  was originally in A to each state originally in B and visa-versa. 

' Therrfore by juxtaposing sequences of transitions there exist sequences of transitions 

between any two chosen states of AB.   By the definition of trancitive closure this 

corresponds to ail I's in the transitive closure transition relation matrix for AB. 

Example IV.D-l 

The processes in Figure 1V-7 are d by forming a process with 
Iwo states fewer than the total number of states of the ong.na  two 
processes.   As shown by the transition relation ^^es  all of   h 
predecessor states of the output process now transfer to »he »u^esso 
stetes of the input process.  All of the predecessor states of the input 
process now transfer to the successor states of the output processes. 

Theorem RI: Rl (combine adjacent processes) preserves the message flow 

structure of • model with respect to graph elements not involved in the reduction 

(whether or not the original graph was safe). 
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11 12 01 02 
11 0 0 0 1 
12 1 0 1 1 
01 0 1 0 0 
02 1 1 1 0 

B 13 14 03 0/! 
13 0 1 1 1 
14 0 0 0 1 
03 1 c 0 0 
04 1 1 I 1 

Becomes 

AB 
11 
12 
14 
02 
03 
04 

11 12 14 02 03 04 
0 0 0 1 0 0 
1 0 1 1 1 \ 
0 0 0 0 0 1 
1 1 1 0 1 1 
0 1 0 0 0 0 
0 1 1 0 1 1 

V        V 
IJ.      14 

12   AB 
OA 

02  03 

TT 

Figure 1V-7. Process combinations 

Proof: Let A and B be the original processes and let AB be the result of 

combining them. It will be shown that any message that could be requested by A or B 

can be requested by AB and that any message that would bo sent by A or B to ■ link 

will be sent by AB. 

By Lemma R1.5, the new process is monodesmic and has no transient states. 

Coupled with the reduction definition, this means that all states of AB can be entered 

exactly as rften as in the original processes, A and B. Thus all input ports of AB are 

guaranteed to be able to receive messages if they originally could, so the state 
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associated with a given input port will always be able to change. UKewise each state 

associated with an output port of AB can change to another state if it could originally. 

For these two reasons all messages that would be requested by A or B will be 

requested by AB and all messages that would be sent by A or B will be sent by AB. 

1V.D.2. R2t  Eliminate atata of a procesa 

There are three circumstances in which a state of a process may be removed 

by applying reduction R2. There are two distinct methods of removing a state: 

combine two states to become one; and eliminate a state. As with Rl, the removal of a 

state does not affect data flow patterns. (An exception is that the combination of two 

states into one sometimes modifies the r jmber of times a state repeats.) 

The method used to combine (too itam into one state is defined as follows. 

Let A.x and A.y be the names of the states of process A being combined. For 

convenience, the resultant combined state will be called A.x. The rule for combining 

the states, in terms of the transition relation matrix for process A, is: 

Let A.z be a state of process A that is neither A.x nor A.y, i.e. it will remain 

after the reduction. 

cXA.x.A.z) ■ c(A.x,A.z) v c(A.yAz) 
c^A-zAx) ■ c(A.z(A.x) v c(A.z,A.y) 
c'(A.x,A.x> • c(A.x,A.x) v c(A.yAx) V c(A.yAy) V c(A.xAy) 

The above means that any successor of A.y becomes a successor of Ax, end 

any predecessor of A.y becomes a predecessor of A.x. 

Lemma R2.1: The reduction to eomMn« iiaiaj yields a legal process. 

Proof: It must be shown that the resultant process has no transient states and 

is monodesmic. The original process. A, was legal and thus there existed finite 

sequences of transitions from each state to each other state.  The construction of the 
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new process by comhin« »tatet guarantees a legal process since (a) if there existed a 

sequence of transitions between two states without going through A.y, the reduction 

does not alter the sequence and (b) any sequence of transitions that went through A.y 

will now go through A.x instead. 

The method used to eliminate a ttate of a process is defined as follows.   Let 

A.x be the state being elirrnated and let A.y and A.z be other states.   The rule for 

eliminating a state, in terms of the transition relation matrix for process A, is: 

c'(A.y,A.z) ■ c(A.y,A.z) v (c(A.y,A.x) A c(a.x,A.z)) 

The above means that A.y proceeds A.z either if it did before the reduction or 

if A.y proceeded A.x and A.x proceeded A.z. 

Lemma R2.2:  The reduction to eliminate a ttate yields a legal process. 

Proof: A sequence of transitions between two states not going through A.x 

still exists after the reduction. A sequence of transitions that went through A.x, simply 

skips A.x after the reduction. Thus the reduction yields a process that is monodesmic 

and has no transient states. 

R2a: When two ports of the same type are connected to the same linK one port is 

removed, depending on one of the following conditions. 

(i) Each of the two states can succeed the other in one transition. This 
means that the states are equivalent to one immediate-recurrent state. 
The two states are combined to become one state. 

(ii) The successor states of the two states are the same (not counting each 
other). This means that the states act as one state with possibly different 
transition probabilities from the original states. The two states are 
combined to become one state. 

(iii) The two states are in-sequence, i.e. one state will enter the other with 
certainty. Alternatively, they may be one-to-one. This means that the 
two states are really one with finite repetition. One of the states is 
eliminated. 

Note that a link is also eliminated by reduction R2 when all ports that had been 

attached to the link are deleted. 
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R2b: When a llnK is only attached to both input and output ports of process, then 

pairs of these input/output ports of the same process that are one-to-one and repeat 

the same number of times can be eliminated. When this st ucture occurs, every 

message sent to the link is guaranteed to be requested by one of the other ports of 

the process. If the ports are the last two connected to the linK then the link is also 

removed. 

Example IV.D-2 

In Figure IV-8, ports II and 03 are adjacent and are one-to-one. They 
are eliminated as shown. 

Becomes 

ALPHA 
U 
12 
03 
04 

Becomes 

ALPHA 
12 
04 

11 12 03 04 
0 1 0 1 
0 0 1 1 
1 0 0 0 
0 1 1 1 

12    04 

12   ALPHA   04 

Figure IV-8. Adjacent ports of a process 

R2c:   A state that is attached to a SOURCE/SINKt is eliminated, since once it is 

entered, the process can always be assured of being able to enter a new state.  If the 

♦A SOURCE/SINK is either a SOURCE or a SINK depending on the context. A SOURCE 
would be attached to an input port, whereas a SINK would be attached to an output 

port. 
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state it the last state of a process then the entire process is eliminated.   If the port 

was the last port attached to a link then the link is also eliminated. 

Example IV.D-3 

In Figure IV-9, both ports 14 and 06 are attached to SOURCE/SINKS. 
They are both eliminated. 

Theorem R2: R2 (eliminate states of a process) preserves the message flow 

structure of a model with respect to graph elements not involved in the reduction 

except for links attached to SOURCE/SINKS 

Proof: Let A be a process that is reduced to A'. By Lemmas R2.1 and R2.2 

each state of A' can always be entered. The cases to be considered are enumerated 

by looking at how a link was attached to A and then to A*. 

A link that was attached to A and not to a port of A that was eliminated by the 

reduction will still have the same interaction with A' as with A since, by construction, 

any states that would have entered an eliminated state will transfer to a successor of 

the eliminated state. Thus the state that is attached to the link will occur just as often 

in A' as in A. 

A link that was attached to A and is attached to A', but by one fewer port, will 

still have the same interactions with A* as with A since the remaining connections to A' 

are constructed to guarantee this. Two states of the same type that are attached to 

the same link and succeed each other act like an immediate-recurrent state since any 

number of link interactions can occur before a different state is entered. Two states 

of the same type have the same successor states and are acting in the same manner as 

one state except for different probabilities to the successor states. Two states of the 

same type that are in-sequence and are attached to the same link act like one state 

that repeats before entering another state. 
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Figure 1V-9. Ports attached to SOURCE/SINKS 

01 

A link that was attached to A and is attached to A' by two fewer ports occurs 

when pairs of input/output ports are removed. The message flow is preserved since 

the ports were only removed if they were one-to-one. This means that whenever a 

message is sent to (requested from) the link, it Is guaranteed that a message will later 

be requested from (sent to) the link. A link that was only attached to those two ports 

Is removed as part of the reduction.   Since the message flows to and from the link 
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were eliminated with the link, the remainder of the graph Is the same.  This completes 

the proof. 

By assumption, Theorem R2 is not concerned with linKs that had been attached 

to SOURCE/SINKS mi are no longer attached to a port of a process. This situation is 

represented by reduction R2c. Messages flow between a SOURCE/SINK and the 

reduced process. The reduction occurs by considering the SOURCE/SINKS as message 

suppliers and terminators. Reduct'o.T R4 eliminates these processes and so message 

flow involving them is eliminated. 

IV.D.3. R3:  Combine processes that are in-parallel 

When two processes are in-parallel, each process has only one input and one 

output port and both processes' input ports are c^-'hsd to the same link and both 

output poris are attached to the same link. Wh&n a message is in the queue of the 

common link attached to the processes' input ports, it can be requested by either of 

the processes. Whenever the choice will not affect message flow the two processes 

are combined. In particular, an immediate-recurrent state subsumes the function of the 

state of the process that is attached to the same link. Thus a DELAY that is in-parallel 

with other processes containing two states is eliminated. 

A Bl/ICK BOX is a process having just two ports, one output port and one 

input port. Both associated states are immediate-recurrent. Any process that is in- 

parallel witt i a BLACK BOX can be removed since the BLACK BOX subsumes the 

operation of the othor process. 

Let the two processes be ALPHA and BETA with ports ALPHA.I1, ALPHA.01, 

BETA.11 and BETA.01 (Figure IV-10). The second process, BETA, will be the combined 

process.  The new transition relation matrix is defined by: 

c^BETA.!!,BETA.11) ■ c(BETA.Il,BETA.Il) v c(ALPHA.Il,ALPHA.Il) 
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c'(BETA.Il,BETA.01) ■ c(BETA.lllBETA.01) v c(ALPHA.Il,ALPHA.01) 
c'(BETA.01,BETA.Il) ■ c(BETA.01,BETA.Il) v c(ALPHA.01.ALPHA.Il) 
c'(BETA.01,BETA.01) ■ c(BETA.0i,BETA.01) v c(ALrHA.01,ALPHA.01) 

It is obvious from these simple equations that the new transition matrix is legal. 

•^ 11   ALPHA 01 

s. 

s 
* 
t 
• 

• 
• 
• 

Ii    BETA   01 
1 > 

Becomes ^ 
's. 

> 11    BETA   oi » 
• • 
 ^ • ^ . 

Figure IV-10. Combining processes that erö in-parallel. 

Theorer"  B3:   R3  (eliminate   processes  that  are  in-parallel)  preserves   the 

message flow of * model with respect to graph elements not involved in the reduction. 

Proof:   If one of the input ports that is attached to the link attached to the 

input ports of the two processes is immediate-recurrent, tnen it is possible that an 

undeterminable number of messages can be requested by the processes before a 

message is sent to the linK attached to the processes' output ports.  Thus, if one input 

* state  is immediate-recurrent then the elimination of the other does not affect the 

number of messages that can be accepted by the reduction of the pair of process 

into one process.   Likewise if one of the output ports is immediate-recurrent, any 

number of messages can be available at the link attached to the output ports and so 

the other output port is eliminated. 

If neither input port is immediate-recurrent then the combination of two input 

ports is the same as one of them requesting a message twice, so the other can be 

eliminated. Likewise if neither output port is immediate-recurrent then the combination 

is the same as one sending two messages to he link and so the other output port can 

be eliminated. 
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IV.D.4. R4:  Ramov« SOURCES ird SINKS 

Since the original graph was well-formed, all links were originally connected to 

both input and output ports. However, reduction R2c removes all connections of one 

type to a link. When R2c is no longer applicable, no process is attached to a 

SOURCE/SINK. Thus SOURCES and SINKS can be attached to links, but serve no other 

purpose than to have allowed R2c to occur. They are eliminated. If the SOURCE/SINK 

is the last connection to a link then the link is eliminated too. 

Theorem Rfl: The elimination of SOURCES and SINKS preserves message flow 

of those elements not attached to the SOURCE/SINKS. 

Proof: This 's true since reduction R4 occurs after Rl, R2, and R3 are no 

longer applicable and since R2 eliminates all connections to SOURCE/SINKS other than 

the connections between a link and a SOURCE/SINK. Any other elements in ■ graph 

are left unaffected since they are not connected to any SOURCE/SINKS. 

IV.0.5. Graph reducibitity 

The remaining requirements to show the validity of the reductions are that a 

s<ife graph is always reducible and that an always reducible graph is safe. 

Reducibilitv Theorem; A non-empty, well-formed, but not necessarily 

connected, safe graph is always reducible. (Equivalently, an irreducible graph is not 

safe.) 

Proof: Assume the existence of an irreducible graph and consider all possible 

connections to a link in the graph. The implications of the inapplicability of any of the 

reductions are as follows. There    e four cases: 

Casel:   A link is connected to only input and output ports of one process. 
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Since reduction R2 is not appiiceble, then no p«lrt of these ports «re one-to-one end 

so at least one of the ports can dominate the activity at the link. This will cause the 

state associated with the other ports to wait indefinitely since eventually either no 

messages will be available at the link or the link's finite queue size limit will be 

reached. This is a deadlock situation. 

Case2: A link is connected to only two ports, of the same type, of different 

processes, i.e. adjacent processes. Since reduction Rl is not applicable, one of the 

adjacent ports is immediate-recurrent. It is possible for one of the processes to 

dominate the activity at the link. This will cause the other port to wait indefinitely 

since eventually either no messages will be available at the link or the link's finite 

queue size limit will be reached. This is a deadlock situation. 

Case3: A link is connected only to ports of the same type of one process 

connected to the link. Since reduction R2 is not applicable, no pairs of corresponding 

states (i) succeed each other, (11) have the same successor states, and (ill) are h- 

sequence. When a message is requested from (or available to) the link, there Is no 

guarantee which port w'll request (send) a message first. This makes a difference 

since the successor states of the two ports are different. There are no SOURCE/SINKS 

in an irreducible graph so it is impossible to guarantee that another link access will 

occur due to access from other processes. In addition, there are no DELAYS nor 

adjacent one-to-3ne ports of a process and so there are no additional guaranteed link 

accesses due to the process itself. Therefore a proce»» can deadlock because the 

wrong port can access the link first. 

Case4: At least two ports, of the same type, of different processes are 

connected to a link. Since reduction R3 is not applicable, none of the corresponding 

processes  are  in-parallel.   Thus the operation of the model can be affected by 
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whichever of the processes performs the first link access. It is also possible for one 

process to dominate the activity at a linK. There are no SOURCE/SINKS and so no 

guarantees of an eventual link access. The situation can cause a deadlock when the 

wrong process accesses the link first. 

It has been shown that all possible connections to the link yield a deadlock. 

Therefore an irreducible graph is not safe.   The contrapositive of this is that a safe 

graph is reducible. 

The arguments of this section have demonstrated that an irreducible graph is 

unsafe and have proved the Reducibility Theorem. 

Irreducibilitv Theorem:  An unsafe graph is not always reducible.  (Equivalently, 

a graph that is «Iways reducible is safe.) 

F>r00f:   Let X be a graph that is always reducible.  Assume that X is not safe. 

It will be shown that this is impossible. 

By Theorems Rl, R2, R3 and R4, the reductions Rl, H2, R3 md R4 each 

preserve potential message flow in the graph with respect to those graph elements 

not involved in the reduction. Thus no reduction can cause a deadlock due to 

interprocess communication no' involved with the reduction. Further, by the definition 

of each reduction and by Lemmas R1.5, R2.1, R2.2 and Theorem R3. a reduction is only 

applicable to a safe element structure and produces a legal and a safe element 

structure.  Thus a reducible gruph is safe. 

Example IV.D-4 

Figure  IV-1I  shows  an example of  an irreducible graph since the 
following set of state transitions could occur in sequence: 

1. A.Ol 
2. C.I1 
3. A.02 
4. B.I1 
5. 8.01 
6. A.01 
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7. Repeat 3 to 6 until the link L2  becomes full. 
8. C tries to perform C.I2, but can not since LI is empty. B can not 

change state since LI is empty. A can not change state since L2 is full. 

L2 

01 
A 

02 

- 

—^ 

<»■ 

x 11       B     01 11 
C 

12 

J 

-> ' 

LI 

A 01 02 
01* 
02 

0 1 
0 

B 11 01 
11* 
01 

0 1 
0 

c 11 12 
11* 
12 

0 1 
0 

Figure IV-11. A; irreducible graph 

IV.E. The recognition of deadlocks 

Graph Reduction Theorem: Assuming that a STEPPS model is well-formed, that 

initial conditions are igt.ared and that queue size limits are ignored, the Graph 

Reduction Process will yield an empty graph if and only If the original graph is safe. 

Proof; By the Reducibility Theorem a safe graph is always further reducible. 

By the Irreducibility Theorem an always reducible graph is safe. Thus after the Graph 

Reduction Process is completed, if the result is an empty graph then the original graph 

was safe; otherwise the original graph was unsafe. This completes the proof. 
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The graph reductions do not solve the problem of initial state incompatibility. 

This situation can be recognized by examining each process's initial state and the 

attached links. If all initial output ports are attached to links that are full and if all 

initial input ports are attached to links that are empty then the model is initially 

deadlocked. 

It is still possible for a model to enter a deadlock before the model reaches 

steady state due to link queue length limits and initial queue volumes. A solution to 

this problem is a requirement that no link attached to an initial output port be full 

initially. Also these links can not be attached to input ports that are the initial states 

of another process. In addition, not all of the processes can be in initial states that 

are connected to links containing no messages. This is net an nnfimal solution since a 

system may still be safe if some output ports are initially full. However the 

requirement is a reasonable one to model and can be altered easily when steady state 

properties are known. 
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Chapter V 

The STEPPS Simulator and STEPPS Interactive   System 

Since mmy performance properties of realistic programs are difficult to treat 

analytically, a STtPHS model is simulated to collect data which, In turn, Is analyzed to 

predict performance properties of a program. The STEPPS simulator end the 

implementation of the STEPPS system are presented in this chapter. 

V.A. Simulation objectives 

An issue concerning the structure of a multiprocess program is whether • 

particular program decomposition can be improved, i.e. is it a good decomposition. As 

noted in Chapter I, this research does not address the issue of whether the designed 

program solves the problem under consideration. The STEPPS simulation facilities 

serve to enhance predictive performance understanding in the situation where a model 

is so complex that it is essentially analytically intractabi? Another situation occurs 

when a model may be analytically tractable, but very time consuming to solve, 

especially when some modifications are made to it. 

Specific performance issues concerning a STEPPS model are the following: 

1. How much time will be spent computing for each state of a process? 

2. In which states will a process be waiting and for how much time? 

3. Are the queue sizes too small or too large? 

4. What are the expected rates of data flow to a link and of requests from a 

link? 

5. What is the overhead due to interprocess communication? 
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6. Which sets of processes tend to be active at the same time and which 
processes are usually active at different times? 

7. How many processes are active on the average? 

8. What are the effects of limiting the number of available processes and 
using a variety of scheduling algorithms? 

The first question can be answered by performing the semi-Markov analysis 

described in Chapter IV. However, all of the other questions are more difficult to 

answer because they deal with interprocess activity. 

Consider the question of h.w long a process will wait in each state. This value 

may depend upon all of the possible interactions in a model. For example, consider the 

ring of processes shown in Figure V-l. If all of the processes are DELAYS and there 

is only one message in the loop, then the wait time at each input port is the time 

required for the message to traverse the loop when there is initially only one message. 

The problem is more difficult when there are initially several messages in the loop and 

when the processes are more complex. Simulation is used to answer such questions. 

_>     ^-^     _>-=>     H>->     ->-5»     -^->     -> 

<i_       <-^-       «r-<r-      <-<-      «-<-      *"*-       *"" 

Figure V-l. A ring of processes 

Queueing theory can be used to solve the same question and, in fact, to 

produce a more exact result, given assumptions based on Known or estimated 

probability distributions [KleinrocK 75J  However, there are seemingly simple program 
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structures modeled by STEPPS that are difficult to solve using queueing theory. Each 

queueing model must be solved individually and the applicable techniques do not 

always transfer when systems with as many parameters as a STEPPS model has are 

involved; these limitations of queueing theory are well Known [Fishman 73, McMillan 

68]. STEPPS has been designed to be applicable to a variety of system structures and 

to make analysis easy for a system designer. In particular, simulation allows rapid 

interactive experimentation with a number of alternative problem decompositions. 

V.B. Simulation operation and data collected 

In order to discover the answers to the questions discussed in the last section, 

it is necessary to collect a sufficient amount of data by simulating a modeled program. 

The approach taken in this research is to make it possible to collect as much data 

describing the operation of processes and links as might be expected to be useful. 

The implementation of the data collection facilities has been carefully designed to 

facilitate the incorporation of additional facilities so that other than built-in analysis 

can be used. 

The operation of a STEPPS modal was described in Chapter II. At every 

possible change of simulated state^ of a STEPPS model it is possible to collect data. 

Thus the specific operation of a process, a link, and the process scheduler will be 

described below and the data collected at each operation change will be noted. 

^State   in  this  instance   refers  to the  condition of  the  entire  model,  namely  all 
processes, all links and the process scheduler. 
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V.B.I. ProcMt activity and the data collected 

A •imul.t.d pro«« 8o.S th,ough . se,u.nc, of «tion. Ih.t r.pr.s.nt its 

.divity. A. «eh ««on th. simul.-ion sys,.. records th. .... rocn. .e.lon .nd 

co,l.cU .ppropri... dot. concernin, th. .c.ion. Th. sp.ci.ic d... colLCion point, .nd 

data collected at these points are: 

!.     /I..I«.!»,.   When a procss is ini.i.liz.d .1. drt. colLCion ..cili.i.. .r. 

also initialized. 

(b) the time that the link access b^ J^"^ access the 
the link by performing a synchronization check to exclusively 

link (a MP" operation on a semaphore). 

3      Mu.*x.   The time that is spent waiting on the link's ^'usive access 

mutual exclusion between the link and the process. 

<■ rtc-^r^r^rr^ÄÄ^ 
to respond.  The time for initializing this wa.t is recorded. 

5.     lorendy.   The time spent waiting before the I/O operation can occur is 

accumulated. 

;,compl.... Th. .im. sp.n. p.r.ormin8 th. I/O op.r.lion is KCUmuLtod. 

EnJi,.  Th. .,« when .h. '/0.^^l^r.'rVr.'^-nr.S 
a process state is repeated, steps 2 througn  /  are      H 

activity relating to the current state is complete. 

Choo,* The process then chooses which will be the ^•titt-JJj/jJ* 
are coilelted'at this point since this operation takes no time. When the 
operation of the model is traced this change of state it noted. 

9. Compuiin,. The start of a process compute time is recorded. 

10. En^mpu...    The   time   spent   computing   in   the   current   state   is 

accumulated. 

11. R.«.«)»,.  Th. proc «fy .0 b. r.s..r..d .nd rm». b. sch.dul.d. 

The time is recorded. 

%V AVp'endTx'A fö7d«cription of using the simulator and tracing . simulation. 

6. 

7. 

8. 
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12.   Readied.   When the scheduler allows the process to proceed the time 
spent waiting while ready to run is collected. 

Activities 2 through 10 represent a more detailed description of the operation 

of a process than is described in Chapter II. Steps 11 and 12 accumulate data 

concerning the time a process spends wailing to be scheduled. Analysis of the data Is 

discussed below. 

V.B .2. Link activity and data collected 

The sequence of actions that a link goes through represents changes in the 

link's queue size, number of message requests, and time used by the link (if any). At 

each change, tK> simulation notes the new activity and collects appropriate data 

concerning the change.  The activities of a link are: 

1. Inactive. A link will be inactive until it is accessed. The time when the 
link becomes inactive is recorded 

2. Inacce»i. A link has been accessed by an input port. Accumulate the 
amount of time between input request accesses and count the number of 

accesses. 

3 Outnccesi. A link has been accessed by an output port. Accumulate the 
amount of time between message available accesses and count the number 

of accesses. 

4. Exclude. The link has been accessed and the time it was inactive Is 
accumulated. The link now prevents any other access to itself by means 
of mutual exclusion synchronization. 

5. /Iccested. The time the link waited to exclude other accesses is 

accumulated. 

6. Starting. If the link had to be restarted, the number of restarts is 
accumulated. 

7. Started.  The time after restarting is recorded. 

8 (Mimit. If the link has no more room for messages (its queue size limit has 
already been reached), then the number of overflow messages is 
accumulated over time. This is the average number of processes that had 

to wait. 
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9. Accept. If the link can accept a message then the queue length is 
accumulated over time. 

10. Endaccept.  The time after accepting a message is recorded. 

11. /IrrquMt The number of current requests is accumulated over time. 

12. Xmi«. If a message can be transmitted to a process reauesting a message 
then the number of messages in the queue and the number of current 
requests are each accumulated over time. 

13. Endxmit.  After a message has been transmitted the time is recorded. 

14. Rfireceiv*. If a process had been waiting to send a message to the link, 
but could not, due to the link's queue size limit, then it is allowed to 
continue. The number of processes waiting to send a message is 
accumulated over time. 

The activities listed cover all of the activity of a link.   Data are collected 

concerning each property of the link that changes. 

V.B.3. The scheduler and sets of concurrent processes 

The function of this set of data collection facilities is to provide information 

that can be used to infer how the processes interact with each other over time. One 

measure is the average number of active processes. Another measure is concerned 

with which processes are active at the same time as other processes. Before a 

process becomes active it is scheduled to run by a process scheduler. Likewise, 

whenever a process becomes inactive, i.e. is waiting for some reason, the scheduler is 

notified. 

The simulator i* used to estimate the effects of restricting the number of 

processors.   This restriction brings about the problem of the schedulir g of processes 

when more processes are ready to run than there are processors able to run them. 

The STEPPS system provides the following scheduling algorithms: 

1.     First-in-first-out  priority (FIFO).   This algorithm schedules the process 
that has been ready for the longest time.  When several processes have 
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been ready for the same length of time, an arbitrary choice Is used to 
determine which one will be scheduled first. 

2. PROCESS priority. Each process can be assigned a non-negative priority. 
When a choice must be made among ready processes, then the process 
with the highest priority number is scheduled first. When several 
processes have the same priority, FIFO is used to resolve the choice. 

3. LINK priority. Those processes that are ready to run and are in an input 
state are examined first. These processes are req :«sting a message from 
a link. The process that is requesting a message from the link containing 
the most messages will be scheduled first. FIFO is used to resolve any 
additional choices. 

A. PRLK priority. This is a combination of 2 and 3. After these processes 
with the highest priority are selected, then the process requesting a 
message from the link containing the largest number of messages is 
scheduled.  FIFO is used to resolve any additiorH choices. 

5. LKPR priority. This is another combination of 3 and 2. First the 
processes requesting messages from the links containing the greatest 
number of messages are chosen. Then the process with the highest 
priority is chosen among them. FIFO is used to resolve any additional 
choices. 

6. RANDOM.  A random choice is made among the ready processes. 

These algorithms were chosen for inclusion in the STEPPS simulator because 

they are simple and have counterparts in real systems. The last-in-first-out algorithm 

was rejected because it does not adequately represent continued processing. 

Modifications to the STEPPS system that could include different scheduling algorithms 

are discussed in a later section of this chapter. 

The data collected by the scheduler are listed belcw: 

1. Slor». A process is ready to run. Accumulate, over time, the number of 
active processes and the number of ready processors. 

2. Runaprocom. A process is activated. Accumulate, over time, the number 
of active processes and the number of ready processes. 

3. Allactive. A process is ready to run, but all of the processors are active. 
Accumulate, over ;ime, the number of active processes and the number of 
processes ready to run. 

4. Siorlproce«!. A prxass is about to become jctive. For each process that 
is running collect the Jime. This represents processes starting to execute 
concurrently. 
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5. Stopproc(it$. A process becomes inactive. For each process that is still 
running accumulate the time that the two processes were running 
together. 

6. De»chodule. A process has become inactive. Accumulate, over time, the 
number of active processes and the number of ready processes. 

The data concerning the number of active processes are always collected, but 

the data concerning which processes are active concurrently are only collected when 

optionally requested. 

V.B.4. Analysis of the data 

For each process the total time for each activity and wait  is  accumulated. 

Performance expectation? are computed for each of the following; 

Percentage of time spent computing in each process state. 

Percentage of time spent waiting to exclusively access a link for each 
state. 

Percentage of time spent waiting until the link was ready to acknowledge 
access for each port. 

Percentage of time each state waited until the link could complete the 
required I/O operation. 

Percentage of Hme spent performing the I/O operation for each state. 

Percentage of time the process was ready to run but had to wait to be 
scheduled. 

For each link the following performance expectations are computed: 

The percentage of time the link was active, inactive, and restarting. 

The percentage of accesses required for the link to restart. 

The expected time between link accesses, between input port accesses, 
and between output port accesses. 

The expected queue length. 

The expected number of processes waiting to send a message to the link. 
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The expected number of processes waiting to receive massages from the 

link. 

The analysis of the schedule data is used to compute: 

The expected number of active processors. 

The expected number of processes that must wait to be scheduled to run. 

The fraction of time each process computes concurrently with each other 

process. 

Answers to the questions pi ,-sented in the first section of this chapter are ell 

available from this analysis. Estimates are available concerning all of the activities of a 

process and a link. Bottlenecks in the system occur at those links where queue 

lengths are large and where processes are forced to wait for reasons other than the 

■ completion of an input or output operation. By examining the number of active 

processors, decisions can be made concerning numbers of processors needed for the 

program. Data concerning the working set of processes can be used to facilitate 

prescheduling of sets of processes. Likewise when processes are known not to run 

concurrently   it  is  possible  to  manage data  resources  to  take  advantage  of  this 

occurrence. 

For the simulations presented in Chapter III, a variety of the STEPPS simulator 

variables, data collection, and data analysis facilities proved useful. The Bliss/11 

experiment emphasized varying the number of processors available and using the 

alternate scheduler algorithms: FIFO, LINK, and RANDOM. The specific data collection 

and analysis facilities that were the most useful included: 

number of messages into and out of each link, 

expected queue lengths at each link, 

expected process wait time at each link and process ports, and 

average number of active processors. 
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The Hearsay  II experiment was more complex, and used  additional  STEPPS 

simulator facilities.  The "working set of processes" analysis was used to determine the 

proper number of Knowledge Sources to reproduce.   Since tb? overhead associated 

with this facility was large, it was not used beyond the system tuning simulations.  The 

other facilities that were utilized during the simulations were: 

link queue lengtht used to show where interference, 

percent of time spent in process states used to observe which processes 
contributed to the link queue lengths, and 

average number of active processors. 

V.C. The implementation of the STEPPS system 

The STEPPS interactive system has been implemented on the Digital Equipment 

Corporation PDP-10 computer. It is constructed using the Sail [VanLehn 73] and 

Bliss/10 [Wulf 71] programming languages. These languages were chosen since each 

contains features that are most appropriate for its use. The discrete time simulator 

uses a modification of a package of Bliss/10 (hereafter referred to as Bliss) programs 

called POOMAS (Poor Man's Simula) originally written by A. Lunde [Lunde 71]. The 

STEPPS system consists of about 45,000 words of PDP-10 36-bit word memory.* 

The STEPPS system command language was designed with user convenience in 

mind. The command syntax consists of three types: node connection, transition matrix 

manipulation and keyword commands. Wherever possible, unique abbreviations are 

acceptable. For example, ALPHA. 1 »-BETA. 1 means to connect port ALPHA.1001 to a 

uniquely named new link (say Link003) and then connect this new link to port 

BETA.0001.    Another example, DIS CON ALPHA, LINK003, BETA.01  is the  same  as 

'''This includes about 10,000 words for a debugging package and library. 



1      "■" '       ■   i ■■ '■     i.."        |»~||W|H 

V.C The Implementation of the STEPPS system V-l 1 

DISPLAY CONNECTIONS ALPHA, LINK003, BETA.0001 which displays the connections to 

the objects requested. Every parameter to a STEPPS model can be displayed and 

modified by one or more commands. An annotated protocol of examples using the 

STEPPS system is presented in Appendix B. 

The interactive portion of STEPPS was written in Sail and takes advantage of 

Sail's powerful string manipulation and input/output facilities.  The lexical and syntactic 

analyzers   for   the   STEPPS   commands   are   written   in   Sail.    The   data   structures 

representing a model are maintained by a set of Bliss programs.  The Sail program that 

performs the interpretation of the STEPPS commands is recursive, so that when a 

command to  LOAD from a PDP-10 file is given, the system simply calls  the main 

interpret program recursively.  This means that commands in files can cause other files 

to be loaded.  The displays of the STEPPS model components are in the same form as 

the command language.   Thus the display of the STEPPS components can be sent to a 

file and later read in as a set of commands.  The Sail portion of the system acts as a 

front end to the Bliss portion of the system. 

The Bliss portion of STEPPS contains programs which create and manipulate a 

representation of a STEPPS model. The representation consists of a complex data 

structure where each linK node and process node contains pointers to other nodes, as 

in the directed graph representation of a program model. The use of pointers and 

complex data structures is one of two reasons for choosing Bliss to implement the 

representation of a STEPPS model. The other reason is the availability of the POOMAS 

simulation package for Bliss programs. 

The internal data structures are complex since the STEPPS system allows a 

wide variety of manipulations of a model. A process is created when it is first used, 

either to define a connection between a port of the process and a link or to create a 



wüiwi^iriiiiimnni! H 

V.C The implementation of the STEPPS system V-12 

transition matrix for a port of the process. Subsequently, additional ports can be 

added to the process, new connections made, and changes made to the transition 

matrix. Whenever a modification that affects the transition matrix occurs, a validity 

test is performed to insure that the matrix contains proper probabilities (i.e., with rows 

summing to one). This prevents improper alteration of the transition matrix and 

sometimes prevents the removal of a port of a process. A link is created in the same 

manner as a process, viz. when it is first used for a connection or when it is assigned 

attributes. 

The model simulator is constructed from three types of POOMAS simulator 

processes: STEPPS processes, STEPPS links, and the STEPPS schedules. The 

operation of these simulated processes has been described earlier (section V.B). There 

are pointers in the STEPPS data structures that go from the simulation representations 

to the STEPPS representation and vice-versa. This facility makes it possible to 

examine the progress of a simulation and later continue the simulation. The data 

collection facilities are localized and this enables ease in adding to or modifying any of 

these facilities. "I. data analyzer functions are also localized which also makes it easy 

to add to or include other analysis facilities. 

The speed of the simulator is measured by the number of events per second. 

The events are: link access, link startup, link delay, process perform I/O, process start 

computing, and process stop computing. Other states of a process and a link do not 

cause the simulator to schedule an event. The time consumed by the scheduler is not 

measured in terms of events, but is included as the overhead for process scheduling. 

The resulting measured speed is approximately eighty events per second. An 

estimation of the length of time required to obtain results concerning a model depends 

on   the   complexity   of   ihe   model.    The  STEPPS  system  maintains  counts   of   the 
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occurrence of various events and so it is possible to examine whether enough events 

have occurred to continue or discontinue a simulation. 

The remaining major component of the STEPPS system is the deadlock 

recognition algorithm, which is also written in Bliss. The general algorithm has been 

described in Chapter IV. The technique used is to iterate through the set of links und 

apply reductions Rl, R2 and R3 to each process attached to the link. The links and 

processes attached to them are examined repeatedly until none of the reductions is 

applicable. Finally reduction R4 is applied to remove the remaining SOURCE/SINKS. 

Actually, whenever a SOURCE/SINK is identified and all adjacent ports to it have been 

removed, the SOURCE/SINK is removed as well so that it need not be examined on each 

cycle through the graph.1" In addition, once the last connection to a link is removed, the 

link is also removed. Although the order of application of the reductions is 

unimportant, as far as the ultimate result is concerned, the following is the order 

chosen for implementation, and reasons for choosing this order: 

1. R2c (remove ports attached to SOURCE/SINKS). This reduction is expected 
to cause the largest number of reductions to occur. It is also an easy 
condition to determine. 

2. R2a (remove ports of the same type and processes from the same link). 
The conditions for this reduction are easy to determine and reduce the 
number of ports attached to the link. 

3. R2b (remove ports of different type and same process from same link). 

4. Rl (combine adjacent processes). 

5. R3 (combine parallel processes attached to the link). This reduction is the 
one most likely to benefit from application of the other reductions. 

Since each reduction removes one or more connections, the total number of 

reductions is at most the same as the number of ports, which equals the number of 

^he   algorithm   description   (Chapter   IV)   was   simplified   by   not   including   this 
implementation alternative. 
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connections. A more interesting measure of the cost of the reduction algorithm is the 

number of ports that must be examined. The worst case would be one successful 

removal of one port per examination of the ports. If there are N ports in a graph, 

then the algorithm would require at worst N! port examinations. A more realistic 

estimate should be based on the successful application of more than one reduction per 

pass over of the ports. If one fourth of the ports are removed per loop through the 

ports'^ then the total number of examinations required is approximately 4»N. The 

reason that this estimate is more realistic is that successful application of a reduction 

at the beginning of a loop through the ports can cause the application of a reduction 

that might not have occurred before. 

The STEPPS system was designed so that it would be possible to include 

analysis programs that are not original components of the STEPPS system. An example 

might be to use an analysis of semi-Markov processes. The STEPPS system will allow 

such a program to be written in FORTRAN, Sail or Bliss and later included with the 

STEPPS system. The method is to link the new program with the STEPPS system and 

then apply the new program to a STEPPS process. The STEPPS system will convert 

the internal representation of a STEPPS transition matrix to the form expected by a 

FORTRAN or Sail program (i.e., a matrix) and then perform a call of the FORTRAN, Sail 

or Bliss program. The structure of the transition matrix is defined to be the same as 

displayed by the STEPPS "DISPLAY" command. Another type of analysis that might be 

written externally to the STEPPS system is the analysis of a connection matrix 

representing the entire STEPPS model. For this situation, a matrix will be formed to 

represent the connections among the processes and the application of the external 

analysis program would be performed on the representative connection matrix. 

^AII tested cases resulted in even greater reductions than this. 
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Even though the STEPPS system was designed to accommodate externally 

defined analyses, the easiest way to include new features into the STEPPS system 

would be to add them to the system itself. This task should not be difficult for a Bliss 

programmer, since the system is well organized Into many small subroutines, and is 

internally well-documented. Very few of the routines in either the Sail portion of 

STEPPS or the Bliss portion are more than fifteen lines long, so their complexity Is 

Kept to a minimum. In addition, the system includes a large number of debugging 

facilities. The removal of the debugging facilities would probably decrease the sire of 

the STEPPS system by about twelve thousand words (this includes eight thousand 

words of non-STEPPS debugging tools). 

The STEPPS system, as constructed, is really a prototype for tools that should 

be available to a system« designer. As such, a number of lessons were learned 

concerning the systems implementation. One criterion adhered to was the emphasis on 

man-machine interaction convenience. Many times the ease of using simple, yet 

descriptive commands made the STEPPS system appear elegant even when features 

were being debuggec In a successor system, even greater emphasis should be placed 

on the man-machine interaction than in the prototype system. The amount of extra 

code and nominal extra processing time are well worth the user convenience. The 

STEPPS structure was noted above as being well organized, which also must be 

emphasized as a valuable lesson. It was often found th»» disciplined programming 

style used and appropriate testing and debugging aids constructed greatly assisted in 

the overall system development. 

There were implementation drawbacks in addition to the constructive lessons. 

The STEPPS system uses a set of fairly complex data structures. It was not estimated 

during the system design that these structures could grow rapidly (eg. whenever a 
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new port w.s added). Thus during the .pplic.tion of the STEPPS system to the 

examples of Chapter III, the data structure had to be redesigned and rebuilt. 

Fortunately the previously mentioned programming discipline used made »We »omewhat 

painless in terms of propagating errors (some "information hiding" had been used). It 

must still be observed that the data structure problem is not solved, but could be if 

the 'next version of  STEPPS handled simulations and model structures in a fashion 

different from the current system. 

A similar improvement can be made to the STEPPS system by constructing a 

discrete event simulator tailored to the STEPPS model.   The POOMAS simulator was 

used  for  convenience, but it  contains unneeded features that  add to the STEPPS 

, system size and add to the t.me required for a STEPPS simulation.  Thus the simulator 

should be optimized for STEPPS simulations. 
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Chapter VI 

Summary 

,„   thi,   thasi,,   th.   pr.bl.m   of   designin,   pro,r.n„   for   «ynchronou. 

mumpr«c.„or co.pu.ers h« b..n .ddf.M.d.   A p.r.icul.r d.si,n philosophy h.. 

b ph«i«d con.l.l.m Of pr.dic.in, Ih. i.pliCions of d,Si,n d«l.ion. .t ..My 

.,.,„ durin,  muUiprocss pro,,.. d.si,r, .nd d.v„op..nf.   Th. .h.sis pr.s.n.. 

„„„n t«l. consisfio. of . »od.1 for d^ribin, th. d.co.posi.ion of . pro,r.m in.o 

..ynchronou,. concurr.n.iy ..««t*l. .obp.r. lysis *«^ " *>'"*• 

„„..h« . .od.1 conLins . d.,dlo.K, .n in..r.c.iv. sy.t.m for m.nlpul.lin, . ..od.1 

r.pr«.nt..ion., and a s-.lion .ys... for pr.diclin, th. p.rfor™oc. of pro,r.m 

.tructur. und.r . v.ri.ly of schodulin, .iBOrithm. 

Th.s.  fools  (c.ll.d  STEPPS) h.v.  bMP  us.d  .0  mod.1  posslbl.  progr.m 

.truc.ur.s with fin. 8r,nul.ri.y (as with P..ri n..s) and a. a functional l.v.l.  Pot.n.1.1 

„ruotur*   probl.ms   may   b.   id.n.lfl.d   and   a   proB struc.ur.d   b.for.   .n 

inv.s.n-n.  is mad. in a poorly s.rUctUr.d pro,ra,n.   Two -  n.rim.nU hav. b..n 

p.r,„r™d .0 pr.dic.  porformanc. implications of multiprocess .tructur..   In on. 

„p.. sin.   a  STEPPS  modal  and  th.  STEPPS  sys.am,  th.  Implications  of 

 ctin.   th.   numbers   of   availabl.   procssors   and  uslng   dif..r.nt   achedulin. 

.„orltN» .amin.d, and th. .ff.ct of using alt.rnat. program structur« was 

.,p,or.d.   In th. ot perimanl it «as shown that, ultiprocss program 

undar «.v.lopm. ufficiontly instrua-nt.d. th. STEPPS mod.l and sysfm can b. 

used to help tune the program's structure. 

Thus if has been demonstrated that th. STEPPS model and the STEPPS system 

do help to accomplish a well structured design. 



■■ 

VI.A   Designing Programs for Multiprocessor Computers VI 2 

VIA. Designing Programs for Multiprocessor Computers 

The past few years have seen the advent of multiprocessor computers (See 

Chapter I), and more are being developed as hardware costs decrease through 

technological advancement. In addition, since microprocessors and mini-computers are 

being connected to comprise new multiprocessor networks, the need has arisen to 

design programs to utilize these multiprocessor computers. It is now recognized that 

the total cost of a computer system has become based more on software costs than on 

hardware costs [Boehm 73]. Through proper software design the costs for testing, 

coding, debugging, redesigning, maintaining, and extending software can be better 

controlled, thereby decreasing the total cost of the computer system. The software 

design tools discussed within this thesis are particularly valuable due to the current 

interest in multiprocessor programs. 

The approach taken for understanding how multiprocess program components 

interact is based on the interprocess communication structure. It is at this level that 

an abstraction can often be made for a system. Central to the abstraction is the 

decomposition of the total system into a suitable set of functional components. 

Consequently, understanding how a multiprocessing system works can be aided by 

understanding how the components of the system communicate. 

Several tools have already been developed as aids to the design and analysis 

of multiprocessor systems. Of these tools, modeling techniques used include Petri-nets 

[Petri 62], the UCLA model [Estrin 63], and queueing theory models [Kleinrock 75]. 

They have been used to represent interprocess control and data flow, program 

validity, bottleneck identification, and program determinism. However, these models 

suffer from being so complex or abstract as to not really represent the functional 
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aspects of the total system. In addition, these models often have been difficult to 

analyze. Another approach was taken by Riddle [Riddle 72], who combined a functional 

structure with program-like descriptions of individual processes. This model was an 

improvement in understanding overall system structure, but it still suffered from 

requiring programming detail to describe a process's interactions. Similarly due to its 

program-like ature and to its complex algebraic form, Riddle's models are difficult to 

- analyze. Another type of tool, simulation, has proven to be a valuable approach to 

analyzing system design. However, simulations must be individually programmed in a 

suitable programming language (e.g. GPSS or SIMULA). Simulation models provide much 

useful information, but like most programs they are difficult to construct and (often) to 

modify. 

STEPPS consists of a set of design tools that combine several of the 

advantages of the abovementioned tools with a new idea felt to be natural for system 

design. The major new concept is that processes comprising a multiprocess program 

are abstracted as operating in a probabilistic manner with respect to their 

interprocess communication activities. The STEPPS system was designed to avoid the 

dual problems of very fine required detail and reprogramming for examining 

implications of alternate multiprocess program structuring. The other features of the 

STEPPS tools comprise an interactive system used to simulate, manipulate, and analyze 

STEPPS program models. 

VI.A.1. The STEPPS system 

A STEPPS program model is a directed graph consisting of two types of nodes: 

process nodes and link nodes. Communication among nodes in the model is 

represented by the movement of message tokens. The operation of the entire model is 
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defined in terms of the individual operation process nodes. A process can request 

messages from and send messages to link nodes. The sequence of operations of each 

process is defined similarly to the operation of a semi-Markov process. That is, both a 

probability and a computation time are associated with each possible successive 

process operation (request a message from a link or send a message to a link). 

The STEPPS model is more expressive in terms of modularity and potential 

activity than Petri-net like models. Yet the STEPPS model abstracts many of the 

expressive details provided in programming languages and programming-like models. 

The model is at an abstraction level that emphasizes both interprocess communications 

and internal process complexity based on probabilities and timing. In Chapter I it was 

demonstrated that the STEPPS model could incorporate both the Petri-net model and 

the UCLA model. In Chapter III. more natural examples were also demonstrated using 

STEPPS: fork/join, subroutines, probabilistic server processes, P/V, and reader/writer. 

More importantly, two non-toy, more complete examples were modeled and simulated: 

Bliss/11 and Hearsay II. 

The STEPPS simulator, which is invoked from the STEPPS system, can be 

configurec.' to represent a variety of execution environments. These environments are 

defined in terms of the number of processors available and scheduling algorithms used 

when a scheduling choice is required. Data are collected and analyzed to predict such 

aspects of » modeled program's performance as queue lengths, rates of data flow at 

links, process activity and parallelism. Some measures of parallelism of interest to 

STEPPS are those concerning the average number of active processors and the 

working sets of processes. 

The STEPPS interactive system was designed to facilitate man-machine 

interaction.  Some features of the »ystem are; commands for creating and manipulating 
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STEPPS model representations» commands for saving a mo^pl or parts of a model for 

later retrieval; commands for displaying all parameters of a model and simulation; 

abbreviations for most commands; and automatic assignment oi default values to 

unspecified model and simulation parameters. 

The STEPPS model can be automatically analyzed to determine the existence of 

a deadlock possibility. This analysis (detailed in Chapter IV) is performed by 

iteratively applying a sequence of graph reductions to a STEPPS program model until 

no further reduction is applicable. The reductions, which are applied when certain 

constraints are satisfied, are: combine two adjacent processes into one; eliminate 

states or combine two states to be one state of a process; combine two processes that 

are in-parallel; and eliminate processes that can perform only one operation. 

It has been demonstrated that each reduction preserves the possible 

interprocess communication among those processes not involved in the reduction. If as 

the result of the completion of all possible applications of the reductions there are no 

nodes remaining then the original representation was that of a structure with no 

deadlocks. Otherwise the original structure contained a non-zero probability of a 

deadlock. The complete reduction algorithm has been implemented as part of the 

STEPPS system. 

VLB. Experiments and Results 

Two non-trivial experimental applications were conducted to validate the 

usefulness and significance of the STEPPS tools. The Bliss/11 compiler structure [Wulf 

75a] was studied, modeled, and analyzed for reconstruction on a multiprocessor based 

upon a design similar to its sequential structure. The Hearsay II multiprocess speech 
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understanding system [Lessee 74, Fennell 75b] was analyzed using STEPPS to help 

explain a phenomenon of interprocess interference [Fenne'l 75a, 75b]. 

VI.B.l. The STEPPS Bliss/11 application 

The STEPPS Bliss/11 application, presented in Chapter 111, was performed to 

predict potential throughput increases if the compiler structure were moved to a 

multiprocess organizational environment. Using a multiprocess structure, based upon 

the compiler's pipeline organization [Wulf 75a], it was found that throughput could 

increase approximately 3.5 timss over throughout achieved with a single process 

structure. In addition, by using the STEPPS simulator features to restrict the number 

Of avaiiabie processors and schedule ready processes on them, it was found that most 

of the throughput increase could be attained by using two thirds of the potential 

number of processors. Furthermore, it was found that varvir . schaduling ggorithms 

available to the STEPPS system (i.e. FIFO, most waiting requests, and random) did not 

appreciably affect the tiiroughput rate. 

The   Bliss/11   structure   was   augmented   to  examine   i isequences   of 

providing duplicate processes for some of the Bliss .ompiler components. The 

results of the simulations demonstrated that there would bo an increase in throughput, 

but that potentially it was not large (about 4 times sequential). These results also 

indicated that the necessarily sequential lexical analysis stage of the compiler is a 

significant bottleneck preventing compilation speedups. Again it was observed that 

most possible throughput was reached by jsing about two thirds of the potential 

number of processors. 

A   systems   designer   embarking   on   designing   a   multir    . sssor   Bliss/11 

implementation can use  these results to aid in determining where  to concentrate 
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effort«. It was predicted that the crucial part of the compiler process structure was 

the purely sequential lexical/syntactic analysis component. Hence this component 

should receive attention to optimize its processing. Alternatively, 't could be 

concluded that there is processing time available to perform more sophisticated and 

time consuming semantic optimizations since the lexical/syntactic analysis uses the bulk 

of the compiling process. Another conclusion for the systems designer is that there 

does not appear to be a large gain in processing achieved by designing a compiler to 

dedicate a processor to each process. Instead it appears that a design based upon 

fewer processors than the potential number of processes can achieve almost as good a 

throughput rate. 

VI B 2 The STEPPS Hearsay II application 

The STEPPS Hearsay II application, presented in Chapter III, demonstrated that 

STEPPS can be used to model abstractly a -eal multiprocess program structure; to 

reproduce an interesting phenomenon of that program structure; and consequently to 

indicate whether the causr of the phenomenon is at the structural level abstracted by 

the STEPPS model. The Hearsay II Speech Understanding System (HSII) [Lesser 74, 

Fennell 75b] has been designed to utilize a variety of analysis sources to solve the 

problem of understanding human speech for the performance of a task. The task has 

been functionally decomposed in a data driven structure so that individual components 

of the understanding process can be performed concurrently in a closely-coupled 

multiprocessor environment. 

The STEPPS model was used to represent the operation of the individual 

processing components of the HSII system: the pr«con<fiiion (PC) processes and the 

knowledge «ourc« (KS) processes.   In addition, the d la base (DB) blackboard was 
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modeled as a set of synchronization locks. This model is an abstraction based upon an 

analysis of the HSII structure and upor <ata provided as a result of instrumentation 

incorporated  into  the  HSII system J  HSII designers  and  implementers.   The 

specific data provided were obtained from executing HSII in a sequential (single 

processor) manner. 

The STEPPS HSII model is probabilistic in nature end is based on potential 

communication activities. The three types of communication activities emphasized are: 

initiate a precondition process, access the data base, and initiate a Knowledge source 

process. The data provided from the implemented prototype HSII system were 

analyzed to provide estimates for choices of precondition processing activity. The 

data were also used to determine STEPPS HSII process computation times and 

probabilities for accessing portions of the data base. Probabilities (based on the 

provided data) also are used to indicate a precondition's potential initiation of a 

knowledge source process. 

The accessing of the HSII data base blackboard is organized as a hierarchical 

(lock/unlock) synchronization structure to maintain data integrity and to prevent 

processing deadlocks. Fennell [Fennell 75a, 75b3 performed simulations of a 

multiprocessor HSII system and discovered that locking interference placed a 

substantial overhead on the HSII throughput rate as measured by the average n-jmber 

of active processors. Specifically, he found that the interference decreased processing 

by about two thirds, but he did not explain the reason for this phenomenon. 

The STEPPS system was proposed as a tool to determine whether the locking 

interference phenomenon occurred due to locking of a small number of data base 

segments or whether the problem was more complex. An implication might be that the 

locking   hierarchy   mechanism   might   be   made   simpler,   i.e.   less   finely   grained. 
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Simulation« were performed, based on the STEPPS HSI1 model, varying the number of 

possible data base regions that could be locKed. In addition, the model was simulated 

with locking turned off (as in Fermeirs simulations). The result was that the average 

active number of processors with and without locking, using the STEPPS simulations, 

corresponded to Fennell's results. 

This result is significant in that the locking phenomenon was reproduced while 

based on a simple probabilistic communications model. Since the probabilities used 

were Uken from a sequential execution of the HSII system, the interprocess 

cooperation did not seem to affect greatly the locking interference problem. The 

hypothesis that the interference was due to locking of a small number of regions was 

supported by the simulation statistical results. 

The STEPPS system was demonstrated as providing the HSII system designers 

with a tool for modeling communications structures. It has provided the HSII designers 

some interesting information, and through modification of the computation times, 

probabilities, and model structure it should be able to provide more Information. Thus 

the STEPPS HSII model should be a useful framework for exploring the effects of 

possible design changes suitable to the model's structure. 

VI.C. Future research and refinements to STEPPS 

The STEPPS model and simulator are based on a fixed interprocess 

communication pattern and a fixed number of processes. These restrictions were 

judged to be necessary when the deadlock detection algorithm was designed. It is 

unknown whether dynamic creation and deletion of processes will still allow the 

application of a deadlock detection algorithm. It may be necessary to restrict the 

types of operations and connections that dynamically created processes can have. 
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Several other generalizations of interprocess communication may be considered 

as modifications to the model. Hierarchical and interrupt relations are multiprocess 

relations that it is not now possible to model using STEPPS, however, it may be 

possible to modify the model to include such structures. 

A limitation of the STEPPS model discovered during applications of the model 

was the introduction of extra modeling complexity required to model some possibly 

interesting program communication structures. For example, the STEPPS reader/writer 

model demonstrated that the STEPPS model only worKed with a finite number of 

readers/writers. This is a symptom of processes' actions not being determined by 

information carried by the message tokens (e.g. tagging, sender, return-request, etc.). 

The inclusion of actions (other than timing) based on message contents would add 

program-like complexity to a process model and would also discount the present 

formulation of the deadlock detection algorithm. Any extension to the STEPPS model 

based on including message information may not prove fruitful due to its own form of 

added complexity. 

Areas of deadlock analysis beyond the detection algorithm would be the 

identification of cause(s) and the prediction of the probability of a deadlock over time, 

events, or some other measure. The STEPPS system can be used to trace the 

application of the deadlock detection algorithm and to display a resulting irreducible 

graph. Studying this trace and the resulting graph has proven useful in discovering 

the cause of deadlocks while testing the STEPPS system, and it may be possible to 

create an algorithm for this process. 

The STEPPS interactive system uses simple linear displays of a STEPPS model. 

It may be possible to create more natural displays of the directed graph 

representation of a model. This problem may be difficult because a model has no 

defined root, terminal or topology. 
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As the STEPPS system was applied to the examples presented in Appendix B, 

features were added to enhance the convenient use uf the system. It is possible that 

future experience using STEPPS will indicate other improvements. Some extensions 

that might be useful are: 

1. Compute time between port activations need not be fixed; instead it can 
come from a definable density function. This is closer to the actual 
definition of compute times for a semi-Markov process. 

2. The ability to identify a group of nodes and copy them in one operation 
may be used to organize similar subparts of a large structure. It Is 
already possible to copy single nodes and transitions from a process 
state. 

3. The state of a simulation could be saved for future continuation. 

The STEPPS system has been shown to be useful in the design and analysis of 

two multiprocess programs, viz. Bliss/ll and Hearsay II. Now that the author has 

tested and debugg ■< fhese examples on the STEPPS system, others should use STEPPS 

or a system very muc.i like it in the complete design and construction of multiprocess 

programs. STEPPS is intended as a useful group of design tools and should be used 

for that purpose. 

As experience is gained in using the STEPPS model, more techniques such as 

those presented in the beginning of Chapter III can be ere ♦ jd. For example, other 

synchronization techniques may be designed, in addition to the PV and reader/writer 

examples shown. 

Some problems which might be constructed for a multiprocessor and which 

could use STEPPS are: a multiprocess compiler implementation, sort and search 

programs, theorem provers, data pipelines (with and without feedback), and data bas»» 

management programs. 



'■Hi^MPWHH. '^mFWT W»«»!(,ipjJ.«Jpffnp.«i 1,1 |iiM::,,v»jWuwB,iIi»i,l,i|fl,ij^Wiii,«l|Wpliui •«jnmt.' 

VI.D Conclusions VI-12 

VI.D. Conclusions 

As noted in Chapter I, several multiprocessor computers are available and/or 

being developed. In particular, C.mmp [Wglf 75b] has reached a stage of maturity 

where several multiprocess programs are being designed and developed for 

implementation on it. The tools preserted in this thesis research should be useful to 

those designing programs for C.mmp or for any communicating multiprocess program 

environment. 

By using an interactive system, a program designer can create a model of his 

program and discover a variety of implications of his design decisions. The STEPPS 

system is most appropriate for this type of exploration of a program structure space. 

STEPPS provides analysis tools and simulation tools in one interactive system. Neither 

unique model analysis nor unique simulation models need to be developed when the 

STEPPS system is used. 

A second advantage of jsing the STEPPE system concerns the ability to predict 

performance changes in a running system before maKing modifications to the system. 

This type of design decision is important for determining where to direct efforts to 

improve a system's performance. The overall structure of a program is no longer the 

only issue; instead considerations include the sensitivity of a program's performance to 

modifications of the orogram structure and changes in modeled probability and time 

parameters. 

The major advantage of the STEPPS system over other systems analysis tools 

and techniques is that the STEPPS system automates the production of results. 

Furthermore, if methods of analysis that are not already available w'thin STEPPS are of 

interest, it may be a simple tasK to include these other methods with the STEPPS 
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system. Finally, the Bhss/ll example demonstrated that STEPPS can be used to 

provide performance predictions quickly for a multiprocess program design, and the 

Hearsay 11 example demonstrated that decisions may be made concerning modification 

to an ongoing system, based upon a simulation of . STEPPS model of that system. 

Thus we conclude that the STEPPS interactive system is a useful tool for the design 

and analysis of multiprocess program structure. 



—~-  

A-l 

APPENDIX A 

STEPPS System Manual 

This appendix contains a complete description of the STEPPS system facilities 

and their use. For clarity, more than precision, BNF notation is used to describe the 

command syntax. 

A. 1. Introduction 

The STEPPS system is an interactive system for use in modeling and simulating 

multiprocess programs.  The following services and facilities are provided: 

Creation and manipulation of models 

Displays of all model constituents 

Analysis for well-formed and deadlock-free model 

Simulation and data collection 

Display of simulation parameters, state, collected data, and statistics 

Model description saving and retrieving 

The three distinctive types of commands are: set model connections, define 

transition matrices, and keyword. These distinctions exist for user syntactic 

convenience. 

The model connection command is recognized by its inclusion of at least one 

V" and is used to connect model nodes. The transiticr •«Mrix command is recognized 

by its inclusion of one "-"+. The keyword commands begin with a command keyword 

and never contain V" or "-". 

rThe one exception to this will be explained. 
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Name» of objects, processes or linKs are defined as in most languages with the 

restriction that a maximum of 10 characters can be uniquely distinguished. 

<name> 
<letter> 
<digit> 

;:- <lelter> | <name><letter> | <name><digit> 
':-A|B|C|D|E|F|G|H|I|J|K|L|M|N|0|P|Q|R|S|T|U!V|W|X|Y|Z|«|HT 
:-0|lj2|3|4|5|6|7|8|9 

<process name>   ::- <name> 
<link name>::- <namc'> 

While a'l input to the STEPPS system may be either upper or lower case 

letters, lower case is automatically converted to upper cf.se. Thus lower case names 

can be used for convenience, but they are indistinguishable from upper case names 

with the same characters (and order). 

Process ports are identified by the process name, the port type, and the port 

number.  The usual definition is: 

<port name>::- <process name> <port type><port number> 
<port type>::- 1 j 0 
<port number>     ::» positive integer less than 1000 
<untyped port name>    ::- <process name>.<port number> 
<port id>    ::• <port type><port number> 

Some connection commands allow abbreviations for <port names> using 

<untyped port name> and context for definition. 

Keyword commands begin with a keyword and parameters follow on the same 

line. The actual syntax of the keyword parameters is dependent on the particular 

keyword. However, consistency among some keyword parameters is that keyword 

subparameters are usually order independent. Also, keyword abbreviations and 

parameter-subkeyword-abbreviations can be used by entering unique initial character 

strings. Thus E may be used for EXIT, but DI must be used for DISPLAY since DENSITY 

is also a command. 

Spaces (at least one) are used as separators between keywords and 

parameters.   In some situations a comma may be used instead of a space, but a space 
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can not be used in place of a comma.  Spaces may be freely inserted around separator 

characters ":,•.«—[]"•  Comments can appear on any line by placing an T which causes 

everything to its right to be ignored.  Line continuation is used by placing a "-" as the 

last non-comment character on a line.  Thus, 

D1S-! ' rst line <cr> 
PLAY-<cr> 
GRAPH ! 3rd line<cr> 

is a legal command . 

Each parameter that can be set by commands has a defined default value. 

These default values will be presented in the command descriptions. 

For the BNF syntax descriptions, two notational assumptions will be used. A 

syntax root, a list definition, and a command will all be assumed. Thus the following 

describes the missing syntax: 

<STEPPS commands>      ::- <connect nodes> | <define matrix> 
| <keyword command> 

<keyword command>      ::- <Mlsr keyword command> | <"2nd" keyword command> 
| <M3rd" keyword command> ... 

<y-list>       ::- <y> I <y-list>, <y> 
<x paramf>::- <x param> | <x parami> <x param> 

A.2. Model Creation 

A model is created by defining the connections among its nodes, its transition 

matrix values, and its link attributes. A model can be given a name by using the 

command MODEL. This name is used when displaying the model components, and when 

saving and retrieving the model description. 

*''<cr> means carriage leturn. 
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A.2.i. Connecting nodes 

The following is the syntax for connecting nodes: 

<connect nodes> ::« <port connection> | <link connection> 
<port connection>:: <typeless port list> *- <connect nodes> 
<link connection> ::■ <link name> *- <port connection> 
<typeless port>    ::- <process name>.<port number> 
<port number>     ::- non-negative integer less than 1000 

A connection between an input port and a link is represented by:   the input 

port name, then a left arrow, and then the link name.  In place of a single input port, a 

list of ports can be used to denote that each port in the list is connected to the link. 

Contrary to tha above BNF definition, the type of port can be included (i.e. Input port). 

Also, when several ports of the same process are to be connected, the process name 

may be left out after appearing once.  The following are legal connections: 

a.l «- alpha 
b.il, C.I2 <- beta 
d.1, a.2,.3,.i4, b.i7 ♦- alpha 

The results of these lines would be to connect input port AH to link ALPHA, 

input ports B.il and C.I2 to link BETA and to also connect input ports D.I1, A.I2, AI3, 

A.I4, and B.I7 to link ALPHA.  All will remain connected to link ALPHA. 

A connection between a lin'-. and an output port is represented by:   the name 

of the link, then a left arrow, and then the name of the output ports.   In place of a 

single output port, a list of ports can be used for connecting each to the named link. 

As above, the type of port may be included and process names need not be repealed. 

The following are legal connections: 

gamma4-d.2 
delta«-e.l,f.o3l.4,g.7 

The two types of node connections can be combined.   When a link appear» 

between sets of ports the meaning is that the input ports (to the left of the first left 
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arrow) are connected to the link and also that the output ports (to the right of the 

sacond left arrow) are also connected to the link.  The following is used to connect the 

ports X.U, Y.I2, Z.U, S.03, R.02, T.03 to the link GORP: 

x. 1 ,y.2,z.i 1 «-gorp«-r.o2,t.3,s.3 

Another method for combining connections is used to denote the connection of 

links to ports having the same number but different types.  For example, 

eta*-p.3,q.7*-nu 

means the same as 

eta*-p.3,q.7 
p.3,q.7<-nu 

Note that the ports must be typeless when using this notation since it 

represents connections to both input and output ports. 

A generalization of the above is also allowed: 

a. 19«-epsilon«-f.3, l.7*-kappa«-c.3«-omega 

An additional notational convenience is available to automatically generate a 

unique link name. It is accomplished by using port names on either side of a left 

arrow.  Thus, 

b.3pc.2«-a.421 

means to generate a new link name (e.g. LINK017) and connect it to the ports used 

(B.3, C.2«-LINK017«-A.fl21). 

A 2 ii Setting transition values 

The following is 'he syntax for setting transition values: 

<set probabilities^:- <port name><repeat factor> - <initial flagxprob vector> 
<repeat factor>    ::- [<repeat number>] | null 
<repeat number> ::- a positive integer  less than 262144 
<initial flag>::- * | null 
<prob vector>      ::- <prob seq> | <prob seq>; <prob vector> | <prob vector^ 
<prob seq>::- <port prob comp>/<prob seq> 
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<port prob comp>;:- <1 or 0><port number> ; <prob comp> 
<prob comp>        ::- <prob>, <conip> | <prob> |, <comp> | <prob>, 

A <prob> is a real number. If It is in the range [0.0,1-0] then it is the assigned 

probability. If in the range [2.0,3.0] it Is a defaulted amount and is ignored. If it is 

negative then the value becomes defaulted. If it is larger than 3.0, then this Is an 

error.   <comp> is any non-negative real number. 

To set transition probabilities the source port is written to the left of an "-". 

If the port activity is to repeat before a transition is made, then the repeat factor is 

placed within square brackets, between the port name and the "-". To the right of the 

"-" appears the destination probability; identified by the destination port type and 

port number followed by a colon and then followed by the transition probability, a 

comma, and the associated compute time. If e V occurs to the right of the "-", then 

the named port is designated as the initial port. The following are examples: 

a.i2-o3:.5,l.6 
b.o3[6]- o4:1.0,.l 
c.il -»12: .6,0.0 

These lines mean that p(A.I2,A.03)-.5 and the related compute time is 1.6. Port a03 

repeats six times before entering state 04 (each time computing for .1). C.il is an 

Initial port £.nd p(C.Ii,C.I2)-0.6. 

Several abbreviations can be used: 

1. Either the probability or the compute time can be le.'t 3üt. 

2. The following is a sequence of state changes: 

a.i3-ol:1.0,.5 
a.ol-i2:.5,1.0 
•.12-14:1.0 
a.i4-o2:.2 

This can be abbreviated as: 

a.i3-ol:1.0p5/ i2:.5,1.0/ i4:1.0/ o2:.l 

3.     More than one sequence or single change can be shown on one line: 
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b.0l6-i5:.3 
b.0l6-i2:.l/03:.5 
b.ol6-o4:.5 
b.ol6-i3:.l 

becomes 

b.o 16-15:3; i2:.l/ o3:.5; o4:.5i i3:.l 

A.2 iii. Model manipulation commands 

Several keyword commands are used to manipulate a model representation. 

Their functions incluie creating link attributes, copying nodes, removing nodes or 

ports, and creating special types of process structures. The following is a brief 

description of these commands. 

ATTRIBUTES is used to assign the link attributes to links. The specific 

attributes are maximum queue length, initial queue volume, start-jp time, and delay 

time. 

COPY is used to copy nodes based on an existing node.  It can also be used to 

copy ports. 

CLEAR is used to remove all processes and/or links. 

DENSITY is used to connect a process to a link as If the process sent or 

received messages with a rate based on a given probability density function. The 

density functions available are exponential and normal. 

DISPLAY is used to display model attributes at the terminal. 

REMOVE is used to remove individual processes, ports, and links. 

A special link called DANGLING is the default connection to any unconnected 

port. Explicit connections can be made to DANGLING, but a model will not be well- 

formed if any connections remain to it. DANGLING can not be removed. 
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A.3. Model Analysis and System Commands 

Keyword commands are used to analyze and test a model. In addit \ there 

are STEPPS system commands used to Interact with the underlying PDP-10 operating 

system. 

APPLY is used to apply a function that i« defined external to the STEPPS 

system to either individual processes or to an entire connection matrix. 

TEST is used to test for a well-formed model. It is also used to test whether a 

model is deadlock-free. 

EXIT is used to exit from the STEPPS system and reenter the i-OP-lO operating 

system. 

LOAD is used to retrieve STEPPS commands from a PDP-10 file. 

SAVE is ui;ed to save the repreoentation of a model onto a PDP-10 file. The 

representation is in the form of commands to recreate the items saved. 

A.4. Simulation commands 

The simulation features of the STEPPS system allow for the assignment of 

several parameters. Most of the simulation parameters can be displayed and altered 

independently of the invocation of the simulation. The parameters are concerned with 

scheduling, data collection, and tracing. A model can be simulated for a period of time 

and then a snapshot can be taken of its current state. Statistics can be displayed and 

the simulation may be continued. No alterations can be made to the model while a 

simulation is in progress and the STEPPS system prevents this from happening by 

asking whether the modification should really be made. If so, the simulation is 

terminated. 
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COLLECT is used to mark the processes that will and will not have data 

collection. 

CONTINUE is used to continue a stopped simulation. It also can be used to turn 

on simulation tracings. 

DISPLAY is used to display the simulation parameters. 

SCHEDULE is used to assign the simulation scheduling algorithm, to mark 

process priorities, and to mark which processes are and are not competing for 

processors. 

SIMULATE is used to invoke the simulator. Some parameters can be assigned 

using this command.  In addition, tracing can be turned on by the command. 

SNAPSHOTS is used to display the status of process nodes, link nodes, and/or 

the scheduler when a simulation is stopped. 

STATISTICS is used to display collected data with analysis for process nodes, 

link nodes, and/or the scheduler when a simulation is stopped. 

UNSIMULATE is used to terminate a simulation that has stopped. Once this 

command is used, the simulation can not be continued. 

A.5. Keyword commands 

The following is a detailed description of each of the STEPPS keyword 

commands. The commands are given in alphabetical order. Parameters are described 

with each of the commands. 

APPLY 

<APPLY cmd>       ::- APPLY External function name><APPLY param> 
<external function name>::" <six character name> 
<APPLY param>    ::- GRAPH | PROCESS <list of process names> 
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The named function is applied to either the entire GRAPH or to the transition 

matrix of each named process. 

The method for incorporating an external function with STEPPS depends upon 

the language used for the function: BLISS, SAIL, or FORTRAN. SAIL and BLISS are the 

most appropriate languages to use since the use of FORTRAN requires some 

restrictions (I/O can only be performed by using SAIL procedures). The following are 

the required procedures to use a function GORP defined in different languages. 

BLISS: 

1. Define GORP as GLOBAL. 

2. Link the STEPPS system and include module with GORP. 

SAIL: 

1. Define SGORP as INTERNAL and add 7 dummy parameters. 

2. Add CALLSAIL (SGORP, GORP, 1); to file SETUP.BLI and recompile it. 

3. Link the STEPPS system and include module with SGORP. 

FORTRAN: 

1. Define FGORP as the FORTRAN function. 

2. Compile the following SAIL module: 
ENTRY; 
EXTERNAL FORTRAN PROCEDURE FGORP (ARRAY M); 
INTERNAL PROCEDURE SGORP (ARRAY Mj INTEGER Dl,D2,D3,D4,D5,D6,D7); 

FGORP (M); 

3. Do steps 2 and 3 for SAIL 

ATTRIBUTE 

<ATTRIBUTE cmd>::= ATTRIBUTE <link name list> <link attributes> 
<link attributes>   ::•= attribute assignment | attribute assignment <link attributes> 
<attribute assignment  ::- QUEUE:<integer> ( VOLUME:<integer> | 

DELAY:<real> | STARTUP:<real> 

Each link named in the <link name list> is assigned the attributes named.   For 
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example, to assign the attributes to link ALPHA of maximum queue length of 3 and 

delay time of 2.0, the following would work: 

ATTRIBUTE ALPHA QUEUE:3 DELAY:2.0 

An abbreviation allows several links to obtain the same attributes.  Thus, 

ATTRIBUTE ALPHA, BETA. GAMMA QUEUE: 17, DELAY:4.0 

assigns the sjme attributes to links ALPHA, BETA, and GAMMA. 

CLEAR 

<CLEAR cmd>       ::- CLEAR <clear paramBt«r> 
<clear parameter^:- ALL | null | PROCESSES | LINKS 

The result of this command is to clear the model of all PROCESSes, LINKs, or 

both, null is the same as ALL. For CLEAR ALL the model name is also reset to the 

default model name:  MODEL. 

COLLECT 

<mi I ECT cmd>   ::- COLLECT <col key> <process name list> 
<col key>   ::- STATISTICS | NOSTATISTICS 

The result of this command is to mark or unmark each process named for 

simulation statistics data collection. Each process in the <process name list> must 

already have been defined before issuing the command. The default is to COLLECT 

STATISTICS for each process. 

CONTINUE 

<CONTINUE cmd> ::- CONTINUE <time> <cont. param> 
<cont. param>       ::- TRACE | MODELTRACE | 

FILETRACE <file> | <null> 

This command is used lo restart (or continue) a simulation where it halted (see 

SIMULATE).  The <time> parameter is a real number representing the length of time the 

simulation should continue. TRACE means to display a simulation trace on the terminal 
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device. FILETRACE <file> extends the named PDP-10 file with the simulation trace. 

The extension TRA will always be used. MOOELTRACE extends the file named 

<modelname>.TRA with the simulation trace. <modelname> is the current model name 

as set by the MODEL command. 

copy 

The COPY command syntax has been changed since the examples in Chapter III 

were created. Both the old and new follow, although the new syntax is the actual 

syntax. 

Old syntax 

<COPY cmd>::- COPv <copy param5> : <master item> 

New syntax 

<COPY cmd>::- COPY <masler item> TO <copy params> 

Common syntax 

<copy params>     ::- <!ink list> | <process list> | <port item list> 
<port item>::" <port name> | <type-less port name> | 

.<! or Oxport number> | .<port number> 

The purpose of the COPY command is to duplicate items to the left of the colon 

to have the same "attributes" as the item on the right of the colon. The actual 

semantics is based on the type of <master iteri> as follows: 

LINKS For each named link, the attributes of the "master item" link are copied. 

Only the attributes are copied, but not any connections since ports can only b#» 

connected to one link. 

V.xampl« 

A.3«-FOO 
ATTRIBUTE FOO  QUEUE:3  VOLUME:? 
COPY   FOO TO BAZ, GORP 

Now BAZ and GORP are linked with identical attributes as FOO (Queue:3, 
Volume:?, Delay:0, and startup:0). However, neither is connected to any port even 
though FOO is connected to port A.I3. 
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PROCESSES For each named process, all of the attributes of the <master item> 

process are duplicated. The attributes include connection to links, transition matrix, 

and simulation parameters. Only an unused name can be the result of COPY. Thus a 

process must be removed before its name can be used as a COPY of another process. 

Example 

A.3<-FOO 
A.01-*I3:1.0/01:l 
COPY A TO B,C 

Assuming that B and C are previously unused names, they will now be identical 
to process A. Thus the above COPY command is a short cut for the following 
commands (assuming process A was previously undefined): 

B.3<-F00 
B.01-*13:1.0/01:l 
C.3^F00 
CO 1-«13:1.0/01:1 

PQ-^TS Named ports are copied based upon the <master item> port. The 

corresponding connections and transition matrix vector ma* be copied. If the master 

port does not exist, it will be created and similarly a new process may also be created. 

The ports named in the <port item list> may already exist. When a new process is 

created or the <port item> process has the same number of ports as the <master item> 

process, all probabilities and computation times associated with the <master item> port 

are set for the <port item port> When the above docs not hold, a port only Is created 

and given default properties. 

The transition matrix values are set in the same order as the <master item> 

port! no examination is made for concurring port number. The repeating factor of the 

<port item> is also set to be the same as the <master item> port. When the ports, 

<port item> end <master item> are of the same type, of the same process, and not 

already connected to a link, then the <port item> port is connected to the same link as 

the <master item> port. COPY makes no change in a process's initial state since that is 

a process property, not a port property. 
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As 8 nofational extension, the process name and/or port type may be left out 

of the <pcrt iter.>>. When this occurs, the previously named process or/and port type 

(to the left in the <port item list> is used. The initial default process name or/and port 

type is the <master item> port process name. 

Example 

FOO-A.2*-BAZ 
A.12-02:l/12:l 
D.I1 - 05:1/02:1 
COPY A.I2 TO A.14, 0.02 

The above copy command replaces the following commands (assuming process 
D did not exist previously): 

A.14«-BAZ 
A.Id - 02:1 
D.02 - 05:1    ! since 05 is the third port of D. 

DENSITY 

<DENSITY cmd>    ::- DENSITY <den. function fype><den. param«> 
<den. function type>      ::- NORMAL | EXPONENTIAL 
<den, param>        ::- PORT <port name> | LINK <link name> 

FOR <positive integer> | GRAIN <positive integer> 
MEAN <positive real> | VARIANCE <non-neg. real> 
EPSILON <positive real> 

Given a port name and a link name, connections and port transition values are 

generated to represent the named probability density function se-v'ce rate as seen by 

the link to (or from) the port. The mean (default:10.0), variance (default:1.0), and 

appropriate grain (same as FOR; default:10) can be specked. EPSILON represents the 

density mass of the distribution tail(s) and is defaulted to 0.001. 

An exact description of the result of the DENSITY command is as follows where 

the process name is PROCESS, given port type is TYPE and the given port number is 

n. 

1. Perform PROCESS.In»-PR0CESS.0n, i.e. create a link and two ports. 

2. Create ports PROCESS.TTPKn+l, . . ., PR0CESS.7TP£n+(grain size) and 
connect them all to fhe named link. 
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3. Do PROCESS.On - In:l 

4. Do PROCESS.ryPKn+1 - PROCESS.On:! 

5. COPY       PROCESS.TTPBn+l       TO      PROCESS.?TPEn+2,       . 
PROCESS.7TPf;n+(grain size) 

6. Set PROCESS.In transition matrix probabilities and time values dependent 
on the named density function. The successor ports are TTPBn+l, . . ., 
TTPErHgrain size). 

DISPLAY 

<DISPLAY cmd>    ::- DISPLAY <display arguments> 
<display «rguments>      ::- ATTRIBUTES <link list> | COLLECT ( COMFETE | 

CONNECTIONS <port, process, link list> | DANGLING | 
GRAPH <DISPLAY GRAPH parameters> | LINKS | LOOPS | 
MODELNAME | PATHS <obj 1> TO <obj 2> | PORTS <process lisl> | 
PRIORITY null | PRIORITY <process list> | 
PROCESSES | SCHEDULER | TRANSITIONS <process, port list> 

<DISPLAY GRAPH parameters>::- ALL | ATTRIBUTES | JATTRIBUTES | 
XONNECTIONS | JTRANSITIONS | null 

The DISPLAY command is used to display items in the STEPPS model and states 

of  the   STEPPS system (though not of  a  STEPPS simulation) on a terminal.   Each 

argument is a command to display different objects and will be described below. 

ATTRIBUTES  Display the attribubs of each link named. 

COLLECT  Display   which   processes   will   and   will   not   collect   statistics   during   a 

simulation. 

COMPETE  Display which processes will and will not compete for available processors 

during a simulation. 

CONNECTIONS  Display the connections to each port, process, and link named. 

DANGLING  Display which ports are not connected to any created link.   These ports 

are connected to the special, non-createable link named DANGLING. 

GRAPH   ALL   or   GRAPH  Display   all   link   attributes   and   connections,   all   process 

transitions, all competing and non-competing processes, and all collecting 

and non-collecting processes. 



A.5 Keyword commands A-16 

GRAPH ATTRIBUTES   Same as JATTRIBUTES and JCONNECTIONS. 

GRAPH JATTRIBUTES  Display just attributes of each 'InK. 

GRAPH XONNECTIONS  Display just the connections for the entire graph. 

GRAPH JTRANSITIONS  Display just the transitions of each process. 

GRAPH TRANSITIONS  Same as JTRANSITIONS and XONNECTIONS. 

LINKS   Display the name of each link. 

LOOPS   Display each cycle in the graph. 

MODELNAME   Display the model name, the date, and the current time. 

PATHS   Display alt paths between the named nodes. 

PORTS   Display the port names for each process named. 

PRIORITY  Display the priority number of each process named (or all). 

PROCESSES   Display the name of each process and its priority. 

SCHEDULER  Display the simulation scheduling discipline. 

TRANSITIONS   Display transitions for each port or entire process named. 

EXIT 

<EXIT cmd>::- EXIT 

Exit from the STEPPS system.   If the EXIT command is issued in a file that is 

LOADed, the result is to return to the STEPPS LOAD command (See LOAD). 

IJOAD 

<LOAD cmd>::- LOAD <file name> <load param> 
<load param>        ::- ECHO | null 

LOAD is used to retrieve STEPPS commands from a stored PDP-10 file.   <file 

name> is the standard PDP-10 file name, viz.   devi:e:name.ext (only device DSKs are 

allowed).   If no extension is used the extension TEP is assumed. 

MODEL 
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<MODEl, cmd>       ::- MODEL <file name> 

For convenience, each model can be named; default model name is MODEL. 

When a LOAD is performed, without any parameters, the model name becomes the 

LOAD file name. The MODEL command can be used at any time to change the current 

model name. 

REMOVE 

<REMOVE cmd>     ::- REMOVE <port, process, link list> 

Each item (port, process or link) in the parameter list is removed from the 

graph. When a link is removed, any port that had been connected to it becomes 

connected to the special link DANGLING. When a process has only one port, that port 

can not be removed; instead the process should be removed. 

SAVE 

<SAVE cmd>::- SAVE <save parami> 
<save param>       ::- ALL | COMPETE | EXTEND | FILE <file name> | 

GRAPH | LINKS | NODES | <list of nodes> | 
PRIORITY | PROCESSES | SCHEDULER | null 

The SAVE command is used to save a model description, components of a model 

description, and simulation parameters onto a PDP-10 file. Its common use is saving 

the entire description and parameters onto the file named by the MODEL command. 

This is accomplished by simply using SAVE with no parameters. The use of the 

parameter ALL is the same as null except that a file name is required. The format of 

the data written is the same as that used by the DISPLAY command, as follows: 

ALL -- same as DISPLAY GRAPH ALL 

COMPETE -- same as DISPLAY COMPETE 

GRAPH - same as DISPLAY GRAPH ATTRIBUTES and DISPLAY GRAPH JTRANSITIONS 

LINKS -- same as DISPLAY GRAPH ATTRIBUTES 

PRIORITY -- same as DISPLAY PRIORITY 
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PROCESSES - same as DISPLAY GRAPH TRANSITIONS 

SCHEDULER -- same as DISPLAY SCHEDULER 

The FILE parameter is used to name the file to receive the data.  No device can 

be specified. 

The EXTEND parameter signifies that the named file is extended instead of 

replaced. 

The   NODES   parameter   signifies   that   the   connections   and   attributes   or 

trjinsitions of '.ne named nodes are to be saved 

SCHEDULE 

<SCHEDULE cmd> ::- SCHEDULE <scheduie parameter 
<schedule parameter    ::- BY scheduling sfyle> | 

COMPETE <processlist> | NONCOMPETE <process list> | 
PRIORITY -process-priority list> 

<process-priority>::- <p,'ociSS name>:<non-neg8tive integer> 
<scheduling style>::- LINK | LKPR | PROCESS | PRLK | FIFO I RANDOM 

The SCHEDULE command is used to set attributes for the simulation scheduler. 

The BY parameter is used to set the scheduling style. The PRIORITY parameter is used 

to set priorities for processes. The COMPETE and NONCOMPETE parameters are used 

'•' 'M which processes will and will not compete for available processors. 

SIMULATE 

<SIMULATE cmd> ::- SIMULATE <time> <sim param*> 
<time>        ::■ <a non-negative real number> 
<sim param>::- FILETRACE <file name> | 

MODELTRACE | PROCESSORS «positive integer> | 
SCHEDULE «scheduling style> | SEED «positive integer> | 
TRACE | WORKINGSET 

The SIMULATE command is used to initiate a STEPPS model simulation for the 

length of time specified. The other parameters set simulation details as explained 

below. No more than one of the parameters TRACE, FILETRACE, and MODELTRACE can 

be used. 
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PROCESSORS sets the number of processors available (or the simulation. 

SCHEDULE resets the simulation scheduling style: LINK, PROCESC, FIFO, RANDOM, LKPR, 

or PRLK. SEED sets the simulation random number generator seed for this simulation. 

Each simulation starts with the same internally defined seed unless specifically set by 

the SEED parameter. 

The TRACE parameter causes messages to be displayed on the terminal 

describing each simulated event. FILETRACE extends the named file with the trace 

information.    MODELTRACE   extends   the   file   <model   name>.TRA   with   the   trace 

information. 

The WORKINGSET parameter causes those processes for which statistics are 

being collected to additiomJy collect statistics showing related working sets of 

processes. 

SNAPSHOTS 

SNAPSHOTS cmd>::- SNAPSHOTS <snap parami> 
<snap param>       ::- FILE <optional file name> | LINKS I 

PROCESSES I NODES <process, link list> | SCHEDULER | null 

The SNAPSHOTS command is used to display current status of a simulation that 

has stopped, but not been terminated (UNSIMULATE). 

The FILE parameter designates that the snapshot is to extend the file named 

(colon precedes the file name) or the <model name>.TRA file. The other parameters 

name the items to be examined; namely the SCHEDULER, all LINKS, all PROCESSES, or 

individually named nodes.  A null parameter means all items. 

STATISTICS 

STATISTICS cmd>::- STATISTICS <stat paramp 
<stat param>        ::- FILE <optional file name> | LINKS | 

PROCESSES | NODES <process, link list> | SCHEDULER | null 
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The STATISTICS command is used to display the current accumulated statistics 

of a simulation that has been stopped, but not terminated (UNSIMULATEd). 

The meanings of the parameters are the same as for the* SNAPSHOT command. 

TEST 

<TEST cmd>::- TEST <test param> 
<test param>        ::- GRAPH | DEADLOCK <test dead param> | 

NODES <process list> 
<test dead param>::- TRACE | VERBOSE | NSAVE | 

NSTRACE | NSVERBOSE 

The TRACE command is used to analyze the structure of a STEPPS model. The 

GRAPH parameter means to determine whether the entire graph is well-formed 

(including each process). The NODES parameter is used to determine whether 

individual processes are well-formed. 

The DEADLOCK parameter means to determine whether any deadlocks exist in a 

STEPPS modpl.   The process destroys the model, so an automatic SAVE is normally 

performed to a unique file before the deadlock test procedure begins and the model is 

normally restored afterwards.  Two types of traces can be performed showing how the 

deadlock algorithm works.   The DEADLOCK subparameters are used to determine how 

the saves and tracer are performed. 

TRACE -- Trace the application of each reduction. 

VERBOSE -- Same as TRACE plus display all transition matrix changes. 

NSAVE — Allow the model to be destroyed without being saved first nor restored 

afterwards. 

NSTRACE -- NSAVE + TRACE. 

NSVERBOSE -- NSAVE * VERBOSE. 

UlSISIMUL/lTE 

<UNSIMULATE cmd>       ::- UNSIMULATE 
The UNSIMULATE command is used to terminate a simulation that has stopped 

so that it can not be restarted (CONTINUEd). 
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APPENDIX B 

Using the STEPPS System 

This appendix presents a protocol of the use of the STEPPS system for the 

Chapter III Bliss/11 example. A discussion of the Chapter III Hearsay II example input 

problem and its solution is also presented. 

B. 1. Bliss/11 example protocol 

An annotated protocol of the use of the STEPPS system for the Bliss/11 mode! 

shown in Figure III-U is presented below. Following the protocol, the simulation 

commands used for the experiments will be presented. A sample of the statistics 

produced upon request after a simulation will also be presented. 

I PROTOCOL FOR BLISS/11 
«nODEL 811 

•DENSITY EXPON PORT LEX.01 LINK LS HERN .21 
Port LEX.0888 Link LS n.»n .269«» Epsilon .tllH Tor (Grain) 111 
Link naiM T INK 881" all I b« und. 

»DENSITY EXPON PORT SYNFL0.0« LINK SO HERN .'ill 
Port SYNFLO.Om Link SO Roan .21688 Eptllon .«8m For (Craln) 111 
Link nam« "LINK6I2' Mill bo utod. 
•SYNFL0.I2I»LS I INPUT FROR "LEX" 
»SYNFL0.08. 18:8, I2lil       I RFTER OUTPUT, INPUT FROM "III" 
.SYNFL0.I28. Iltl I REQUEST HOPE INPUT 

«DENSITY EXPON PORT DELRY.OI LINK DT RERN 1.137 
Port DELRY.08II Llrk DT Roan .13711 Epallon .11111 For (Craln) 111 
Link nana 'LINKIIS' HIII bo uaod. 
•DELAY.I2I-SD I INPUT FROR 'SYNFLO' 

•DENSITY EXPON PORT TNBINO.OI LINK TO HERN .122 
Port TNBINO.OIII Link TC Roan .12211 Eptllon .11111 For (Craln) 111 
Link namo 'LINKII4' will bo utod. 
•TNBIND.I2I-0T I INPUT FROR 'OELRY' 

•DENSITY EXPON PORT CODE.01 LINK CF RERN .114 
Port CODE.Olli Link CF Roan .18411 Eptllon .11111 For (Craln) 111 
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Link nan« -LINKUS' Mil: b« utld. 
•C00E.I2e*TC I INPUT FROH "TNBIND" 

•DENSITY EXPON PORT FINnL.Oe LINK FP HEPN .296 
Port FINRL.Oeee Link FR Htan .29600 Epillon .06180 For (Grain) til 
Link n«mt "lINKeeB" ullt b« uttd. 
»FIN«L.120»CF I INPUT FRO« "CODE" 

•COPY OELPY.I20,  TNBIND.120,  CODE.120,  FINAL.120 i  SYNFLO.I20 
•COPY DELAY.OC,  TNBIND.00,  CODE.00. FINRL.00 i  SYNFLO.00 

•RESULT.I0-FR I DEPOSITORY FOR RESULTS 

•SCHEDULE NONCOnPETE RESULT 

•ATTRIBUTE TC,CF,DT,FR,LS,SD    QUEUE.  10 

The simuljtions were initiated by using the SIMULATE comm ind. The following 

command was used to simulate the model using 6 processors and the FIFO scheduling 

algorithm for 100 time units: 

Slmu>a1a 100 procaitort 6 ichadula <lfo 

The other Bliss/11 experiments were simulated by modifying the SIMULATE 

command parameters for timing, number of processors, and scheduling algorithms as 

described in Appendix A. In order to eliminate the requirement for recreating the 

model for each simulation, the model was first written on a file (using the SAVE 

command) and for each simulation it was restored (using the LOAD command). A sample 

of the stat:stics displayed for links is shown below: 

•»t»t l»t Id 1 at In» ■ ie« 

Hod*l Bit   i l3-«»>-?6 03.« 

Si»('«tlci • t   , i« 100.POO 6 prccttoort. 

Link TIM No. Hr.. N», E'. E«. E«. » TIM » No. t TIM   « t IM ACCK« R«qu«lt S.ndl 

In«« I»» SI»M 1 icdf Paali Oil" Utit OvMo loictve Slirlup» Sttrlup Ott IVt P.I. P.I. P.I. 

cr ion.QQ 1 337 3.-8 5175 .807 .571 180.00» .15» .80« .00» .30 .30 
01 100.00 1 360 319 V529 297 279 100.00» .11» 00« .00» .Z9 M 
FP 100.00 3^8 327 3,'B .000 1.000 .000 100 80» 58.09» .80» .00» 30 .31 
LIWOBl 100 00 379 377 377 .000 .000 .800 100 80» 50 13» .80« .00» ?6 .26 
UNKW leo.oo Ki 371 371 ire .000 000 100. M» 13.67» .00» .00» .17 .27 
LINK«03 100.00 \ze 36" 36» .578 .000 .000 180.00* 17.79» .oo» .00» .78 28 
LINKCOI mo.oo 23? 3<9 3<9 .r87 .000 .000 100.00» 33.95» 00» .00« 29 .29 
LINfOOS 100 00 Z77 338 338 139 .000 .000 toe.oo« 10.96« .00» .80» 30 .30 
Liweos loo.eo 3?e m 328 .007 .000 000 100.00» 54.80» .80' .00» .30 .30 
LS 100.00 ? 37G 371 3.915 IZB .036 loe.oo» .27» .80» .00» .27 .26 
SO 100.00 2 371 360 1062 .578 .eZ7 100.00» .27» 00« .00» r< .28 .27 

it 100.00 2 3ia 338 6  276 .139 zs» 100.00» m ee» on» .15 .33 .29 
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B.2   The STEPPS Hearsay 11 model 8-3 

B.2. The STEPPS Hearsay II model 

The STEPPS model of the Hearsay II system was discussed In Chapter III. 

However, unlike the Bliss/I 1 model, the exact Hearsay II model was not shown since it 

Is too large to place into the text of Chapter III. It was found that many of the 

structures used for the Hearsay II model were similar, but not close enough to utilize 

the STEPPS command COPY to facilitate input of the model. A STEPPS feature 

discussed in Chapter VI as a future system tool for reproducing groups of processes 

and links might have been u:?ful. Instead of implementing that feature, the action 

pursued was to create a simple preprocessor program (in SAIL) to convert a 

description of a Hearsay II model into a form appropriate to the STEPPS system. The 

following is an example of the inout to the preprocessor. The actual probabilities used 

in the STEPPS Hearsay II model are shown. 

procr«t  tflalo   locV«  cl •C?>cS'Mord>pN n 
compute  I IPO dont 

prpect« prtlalo  lock. cll'Cr*.cllb.cll*.clir.clls.cllh,cl4,cM*.cMb 
Comput«   9>79    tnvobt   bBlvlo    ' 

proc»»»  prt\p%rn   lictl  rpilSPfts  l.ptts Z 
co"pu'. • 58 
mvoi.* btlcmfi.VOZ 653 
invokt ('•Ipi.'ni   951 65* 
don« 

proc*«« ktlpavn 
lot I.. c9.c9<.c9f.c9«.c9H,cie.cl««.cl9(.<.cl^. 

elZb>cl2t>cltr>ciZt>rl2h.cll.etla>cllb.CMn.mn l.wi 2.CPM«.PM« I.PU« 2 
ronpult PSBSP 
don« 

proc«»l  tllcw? 
lockt c9.c9«.c9r.c99.c9h,cte.ciei.cl0b.cl?. 

cl?c.clZ« ciZf.cl29.cl?h.cl3.cl3«.cl3b.c««n.»«B l.«.n Z.cpniWi I'PMf ? 
eonput« Z5.445 
don« 

proc«s«  pr«|rpol 
In'-l-i   tM««nt .«hdword'WOrd'Wrdfucn  -^rft,phon.C"<'n.ii)rn   t .nvn 2.cpMt'PMt  l'P9*9 Z' 
conput«  31 
mvol'«  kflluvi ■ 376 
don« 

proc«tft fctluv 
loci'* cl ,c2.c4.cS.c7.c7*.c7b.cB.c9.c9«.c9'.c9<i.c9h,cl«. 

c|A«.clM>.cU.clla.cllb.cll«.cllf.cll9.cl|h,clZ. 
cl2c.cI2«.cl?r,cl?«.cl7h.cM.cl4«.e|4b 

compute 134 

dont 
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proct«« rrtlttf 

comrutt  35-IPO 

■ nvoL«  t«,|nq 

den« 

procvti ^vlatg 
Ipct»   T«9 

Compu*«   ^Ofl 

c«ttpu*« <M 
comput« 100 

comput» 400 

don» 

pror*%%   pr#|utb 

loci-* c4,c5 

conput*  50 

mvoV« kslutbi   OS? SO 

dor» 

procre« i-9 hjfh 

lect« cZ.c3.cS«.eSb.c4.cS'cS*e6i.cir.c6f.c6h.el|.ctla*cllb 
epmpulf 30 
Cfjmpulf   30, 150 

co*put«  30-150 

dem» 

proce«»  pr»|psc 

lorl<» c3<c3».c9b>c7.c7i'C7b 

comput* 50 

mvol-* bt|M«rcht.ia Hft.btllliftli.ia 13S 
don» 

proct»«  kKlivtrch 

in. i-- c?.c3.c3*.c3b.c4.cS.c6.c&ff.rGr.c69>c6h.c7rc7«.c7b.ce.cl3.ct3«.cl3b 

cpwput« 50.1100 

CO»PU»» tOO.UOO 

don« 

prnc»»» Vjlt I«« 

IPCW» C?r3'c3«.i3b>c4.c5'c6'c6«'c6f'c69c6h.c7,c7».c7b.cB>cl3'Cl3B'Cl3b 

comp-jt« 50.??5 

co»P'j*« 75.?t5 
flpn« 

(«vicnn   s«g.pt«g   !'Pv«fll  2-m*n   \ ,mmn  ? .phon .turn .Hrdturn .M0rd> 

«hdwor J.»hdl»nI 

trlock« 

cpr«? pf«? r pf«9  1 

CN«n   «»n   ?  ■xn   1 
cZ cl   »urn 

c3 *iord e7 

C^   wrd'um   cB 

c5 tirdixjrn furn 

cG cB cl2 
C 7   furn   c 10 

cB   »•j'-n   phon 

c9 phpn c\Z 

C 10  phon   C"«»n 

C 1 1   r"»n   c M 

C \Z  c«"*n   cp««9 

C13  phon   cp««9 

cM   cp«««  »»q 

cM«  p««?   I   »«9 

cI 4b  p««9  2  ■«g 

t \ 3«  phon  p«.«9   1 

cI 3b phon pt«9 ? 

cIT* mxn I pfrg 1 

cI2f  «en 1 p««9 2 

Cl?9  "*"> 2 Pf»9 I 

c\Zh  »»n Z pf«9 Z 

ell» »«n   1   cM 
cltb «-n 2 cM 
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clla xn  1 cM« 
clU  m,n   1  eMb 
c Ug  m*n  Z  f M» 
cllh *«n 2 cMb 

c IP» rlw" K»«  1 
clPb chon »«n 7 

c9< phon cl?» 
c3f c^wn clZf 
c99 phon clZ^ 
c 9H phon c12h 

c?« %>irn clO« 
rTb  »ijrn  cl^b 

(G* cS cl2< 
cB( cB eltf 
c6« cB cl2<) 
c6h cB ellh 

r 3»  uord  r-'• 
t 3b word cTb 

don« 

f Im 

The result of the Hearsay II model generation is the STEPPS model which 

follows: 



B.2 The STEPPS Hearsay II model 
KrS& 

B 6 

*    lock iiq  b>'   th« 
'OP'»!    pol 

lO-   Oil    75/nO.ll 
Toprt It««! 

7  If. icon   livtlt  • 2 tubllvtU 
loprtlPtC Toprllptrn 

or n i:i/'n(M.    oJi t.es;/o«iir 
'oprtlUMb ToprtlAIo 

PetpUclor.,».    o4i.009/0«; 1; oS 6 «66/oe.I.      oSi «.««Z/oti 11 
pci»l«clor ,o(«'».«il.l       '  n,,,,,,t Coat tvtrr I uml «f tiat 
re«»1»eI or. o- Tt to 1-prf11tclor. • 
prolrpol . 1-loprolrpol'pctoUctor . 1 
pr»lr«c. l-lopi (IptCTCttloctor,; 
prtlpf yn. lMoprtlp»yn*-pc(«l«ctOr .3 
pr • I **9   1 • t opr «| i»q- cr f • 1 «c I or . 4 
prtlutb. l>lopr«Hulb>Pcf»l«ctor .{ 
pr«l»lo. l«lopr«|»10'K»»l»clor   S 
ich«^ noncoaptt« pcfoltctor 

1  kalal« Loctf cl.cc.cS.Hord.phon 
ktlolo. i !•■ olOh     ."«" 
kf(«lo.il>  vIOZi     ZOO 
kllolo. I|a  olOSt     .»"l 
litlal«. I|I oieii    r«" 
bolalo.i|a olOSi    rno 
iHllci'htlal*. ItUfwltcl 
iNulcl-kdaU.MI 
k«i«io oie'-rioiii/o3«ii i, nweoe/ojii 
lHl|c2«l>t|(lo.l*r>(Hi|eZ 
IHU|C2>II«|*1O.KK 

t»i»io.oio?.iio::i/o3o?i i. iiae.eoe/oj.i 
I.il I' '.-l-H.ln    |lM-(.,l|r5 
luuUS>l.>|*lo.303 
I'tl»lo.ol03'iiq3il/o»3i  1.  iioaeoe/oZi 1 
lit Umrd-V.lilo. lOVflMuord 
ulV lHord^il(lo.304 

Irfl*le.el(4>il04il/aM4i   1.  UW.WO/oZrl 
t!l lphon.l.,|ilo.lM-flHphon 
•jll'|phon-l.«|«|o.30S 
i'ii«io.oiP5'iiesii/o3«Si i. noeeee/oZii 
kdalo. rZ>lit|«|«.a2 
kalaloocxZi 1 
kalalo.it>   ilil 

'  pr,| 

prplal 
pr a I a 1 
pralal 
pralal 
prt lal 

•  pralal 
pr a I a 1 > 
praiali 
pr a I a 11 
pr a I a 1' 
«wllrl 
twirl 
pr 11 a 1 
lullcl 
tuuUI 
pralal 
IHIUI 

IHUUI 
pr a I a 1 
IHIUI 

tuulcl 
pralal 
IMIICI 

iMUlCl 
pralal 
(ullfl 
«MJICI 

pralal 
(Mild 
tMUld 
pralal 
IMIICI 

luulcl 
pralal 
IMIICI 

tuuld 
pralal 

alo Locks cll.clla.cllb.clla.cnr.cll« 
.cllh.cM.cMa.cMb 

. <l*a olOt:   .109 
. iJ« ol02i     IM 
.il« ol03i     100 
■il- olOHi     100 
•il' olOS,   .100 
■■!■  0IO61   .100 

olO^i   .100 
clOBi     100 
ol09t     100 
0IIO1     10« 

a.il 
o. .1 
0. ll 
9.1I 
l-p^alaloioi^f^iun 
1-pralalo  301 
o.oi«ir,iei.i/o3oir 1, Teew/oZii 
la-pralalo.|0r.ru||clla 
la-pralali,302 
o.oior.iior,i/j3o?i 1. Toooe/oJii 
lb-pralalo. 103.ful|r.ltb 
Ib-pralalo 303 
O.ol03'rl03rl/o3«3i   1.   TO.MO/oZil 
la>pralalo  lOI'fulIclla 
la-pralalo.304 
o.ol04.l104,l/o304i   1.  TOWe/oJil 
H>pra|alo  IOS>rN||cl]r 
H-pralaloSOS 
oolOS'ilOSil/oSOS:   1.  7«,MO/oM 
l^-prtialo  |n6.f„i|cll9 
lü-pri|alo.306 
n o:»6. i ins i/r.3116   i. rewe/ojit 
l^'pralalo  l«7.f„l|cl|h 
lh-pralalo.307 
o.oie'-i|07il/o30?i   I.   70 oeo/o?.! 
4>pralalo.iee'(u||cl4 
4*pralalo.308 

olOfl.,109:!/o3«9:   I.   TOOee/oZil 
4a-pralalo.ie9>(ul|cl4a 
4a>pralalo.309 

oieg-,109.1/031).. 1. 7eeM/o?ii 

U'llcMb-pralalo.lie-fulleMb 
luukl4b.pralalo.3l8 
praiaio.oiio.iiieu/osie. i. Te.eee/oZii 
pralalo,i?.pralalo.oZ 
pralalo.o?«iri1 

Wlalo.l^Hk.lalo'prtlalo.Sei 
prtlalo.P2«O9011/O3I| 

pralalo. p3.pralalo.o3 
pralalo.o3>i3iI 
pralalo. P3'   11II 

'  pralmyn Loci'» rpnas.ptai 1 .ptai Z 
pralpii-n. il.« „|B1     .333 
pralpfyt,. ||a   olO;:    .333 
pi t\ptm, il« ol03i   .334 

»"llcpias-pralp,,,,. lOl-fullcpaag 
luulcrooü.prair.^n  301 

praipum •i«i*ii*iii/sni, 1, se.eeo/oz.i 
tUlrsag  l-pralpim. lO^.f ll|pM9 | 
uUlprej  l-pralptyn. 30? 

praip,»n oiez.iioz!|/o3ozi 1. so.eee/oZii 
lldlpta« Z'pralp.cn. ie3'nnp»a9 Z 
ulHf=»9 Z-Pra|p^>n.303 
prrip»>.n.oie3-ii03ii/o3O3i i, se.eee/oZii 
pralp»).n. iZ'pra|p»yn.oZ 
pralpfvn.oZ'iZil 

l-fksa?  l.vl.|l.,|c,a9'pralp«yn.9ei 
prajpayn  ,2.09011   .9O:.650/o3i I 
pralr»rn.,?.03,   .oge.SS« 
pralpacn.i3>pra|p«vn.o3 
prp|p«)'n.o3*i3: I 

k.lp.yn.l.„l,|l.|pi).n.pralpI(.n.9«lZ 
pralp.yn.,3.09«?!     951.S58/o4i I 
prajptvn.,3.041   .049.658 
pralpayn, i1»pra|pa>-n.o4 
Pralp<yn.o4»l4l| 
Pralpayn.14*   i|t| 

I  Ulwrn Locka c9.c9a.c9f,c99.c9h,cI8.ciea, 

clPb.clZ,clZb.cl?a.clZf,cIZ9,cl?h.cl3. 
Cl3a.cl3bicayn,n>n   |,«.n Z.cpaat- 
Pf»9 I P?a9 ! 

I'flpjyn. ,1..  „ini,    .043.   ?5 000 
k«lpf/n.il.   0|(V,    .^3,   2g,Ulf 

■043. zs.ooe 
043.  ZSOOO 
043. !s<<m 
843. ZS.ono 

■O13. 25.000 
043. 25 on« 
043. 25.«tw 
043. 25.000 
043,  25 «0« 
043, 25 «fi« 
044, 25.«00 
044. 25 008 

■044, 25.0OO 
■044. 25.000 
044, 25.000 

044. 25.000 

044. 25.0O0 
044, 25 «88 
044, 25.900 

044, 25.880 

044, 25 900 

llc9 

lif |p»).n. il. ol93 

Mlpfyn. .1« ol94 

Irrlptrn. i|> ol«5 
tsipuvn.1|. nlOB 

tslptvo.i|a p|n7; 
kajpay«.i|. niOB. 
Inlp»>n. , |. ol09: 
l.«lp»yn, ,|. o||0, 
talpun. l|a ollll 
kflpiin.,). oll2, 
kalpfyn. ,|.   0| |3, 
tflr*yn 
luipfyn 
IrlPf in 
kflp*)n 
k» tp»>n 
l-JlP'yn. 1 1 
•■»Ipfyn. 11 

il« 0114, 
il« .■II', 
il* 0IIS1 
il«   0117, 
il« ollBf 

oll9 
ol2fli 

k»|p»»ri. ,1.   ol21 
l-tipivn. ,1.   ol22i 
l-'IrBvn  >!• 0|23, 
t"l k9.l«|pS)n.lO|.f 
Uiu|c3.|'«|p5yn.30| 

V.|p.yn.ol«l.,101,l/o30|,   1, 959.909/02,1 
t"l Ic9«-I.»|p,yn. l«2.ful |c9a 
»w|rCa-l.|p,yn.302 
I..lr.yn.oin2.,l«2,|/o302i   1, 959.909/02,1 
Uil|c9».|.,|p,yn   l«3»ful|t9f 
Uiujc9f.|.f |p«yn.303 
lu|pfyn.olO3.il03.|/o3O3i   I 
(ulk99.|,t|p,y(,.i0<.fwi|c99 

lMuk99.|.f|pjyn.304 
l.«lpfyn.ol«4.,104,l/„304,   I, 9S9.090/o2,l 
lul le9h«liitMrn, I05>rul k9h 
lnuk9h.|,«|p,yn.30S 

I'»lpfyn.ol05.il05,|/o305i   I 
tMlkl«-l.I|p,y„.|06.ful|(.le 

859.808/02,1 

959-8««/o2il 
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tilp«.n.ol06'Mn6M/o3<»6i   !■  BSB.WW/oZil 

«ul )c ll1»'t«lP«»'"-1*7''"! !«••• 
(HulclQ«*l'*ii trn.H? 
k»|p»>n.ol«7T.lB:il/o397'   l<   BSeWfl/o^'l 
tiattinb-t»lp»>'n- 19e-f"l|cl9b 
tuij|clBb-l'J|»»l">-3<18 
t.lr»v" olOB'.l'iBil/oJoei   I.  BSBBOB/oZil 
tulleIJ'Wilptvn.lP9-»ullcl2 
(«ulcU-ttlpi^-a^ 
lm|p«in.ol09'plP9il'o3n9-   1.  BSB.BOB/oZil 
lullcirb-nlr»'"  IIO-(wllclZb 
tuulcI2b'k»lrtKn.318 
Wtlprvn.cllO'ilKM/oaiBi   1.  Kt.ttf/tlii 
lullclZ('^f|P(rn.lll>fHllcl7f 
(MU|< l?ft«lpti'n.311 
IxlPfrn.elll'illlil/oBlli   I.  KW PBC/oZil 
twiicirf-kf iPK'n.iir-fuiui?' 
tuulcirf-f Ic>»>"i31? 
(.tlpti-n.oin'iMZil/eJtZi   !■ IM.»W/oZil 
«wllclZs'i'tlpf"  113'fMlleU« 
tU'j|':l?<l-kllP«l"'    313 
ttlp«^.oll3'ill3:l/o313i   1. Bse.eeB/oza 
lulUlch-tllpi/n. IM-fullcirb 
luijkl.'h-ktlpscn. 3H 
k«lr»>".olM«ilMil/c31^   !■  BBWB/otil 
t«llcl3-k»lr»»"  115-«ullcl3 
»uuklS'WflP«)"  3IS 
ktln.n oll5-rllSil/o314'   I.  BSBOBB/oZl 
tullcl3r>'t»lpl)'n    1IS-<"1|CI3» 
luulc13»-lllp«>n-316 
ttlpfr, oll6'ill6.l/oii6:   l>  B59 »BP/oZ.l 
tMllcl3b-kflrfyn.lP-(^l|cl3b 
l.iulcl3b-kflp»cn.3K 
k»|pfcn.oll7'ill7:l/o3l7i   I.  BSBBOe/oZ-l 
Uillcm.n-ktlpfyn. 1 1B*(M1 lc">«n 
lu,ilci»"n*k»lpfvn.31B 
litlp»yn.cll««ilH"l/o3l»'   I- BSBBW/oZil 
UH"«n   l.k»)p»^n. 119-flH"<-n   I 
ulklmvn   la.lr-.r.   IIS 
k.lpiyn .J119-I119. Wo319i   L  BSB «W/o?il 
tlk|iii«n   Z»ktlp»yn. 1J0-f lH«»n   Z 
ulk|«-n   Z-ktlPtyn.3r0 
kilrtyn.olZtl-'IZOi l/o3Z9i   I-  BSe.BfW/oZil 
tu\ lepMV'I'dPSrn. IZl-ful kp»»? 
twuIcpfffQ'kilpivn.3Z1 
isirv o.oizi.iizi.i/oszii l< Bs» eee/oz.i 
tlklpf«?   I'kilptKO. kZ-f 1HPM3   1 
ulklr"«q   l'kllplyn.3ZZ 
ktP.Kn.oizz-iizzii/oSZZi i. B5«.eoe/oZ.i 
l|k|t<*t|  Z'kllpsyn. lZ3-'lk IPS«?  ? 
ul'/ Ipre9 Z'l'i|p?)'n.3Z3 
k.|p.Kn.olZ3'.IZ3il/o3Z3'   I-  BSPBPO/oZrl 
k«lr«>n.iZ'kllpsyn  oZ 
k»lp«yn . tiZ" iZ: 1 
kslpsyn.iZ»   fl'l 

1   kllcM9 Lock»  c9 
! cl9«■c1 WJ ■ c 
i clZh.rl3.cl 
1 cpi«9-P11te| 
k»lc»»9.ll»»   0191 

il> olPZ. 
i|> olOSi 
.!• ol94i 
il' 0105: 
ii« oioe> 
il« olPZi 
il- olPBi 

If« Us»9- 
1i|c««9. 
k« |C««9' 
IrflcMf' 
k«lc«e9. 
kf lcf«9. 
k»|cf«9- 
kflcf«9.il' Ol09i 
kllc««3 ll" OIIPI 

k«lc«4< il* nl 1 1 
jrflCI««. ll« ollZl 
kf|c««9 •1* ol13t 
k«lcfr9. i I' ol Mi 
k»lc»»9 ll« «US' 
k«lc»I9 iI« otlSl 
k«lc»«9- I I« oll7: 

k«lc»«9 ll« »I'B' 
b»lc*M' '■* o'19' 
irslcMI' 'I* «l^' 
Iralcmf'''' "'■'' 

c9«.t9f .c99 <:9^i.cle. 
IZ.i-.lZc.clZt.clZ'.clZ». 
3«.': ISb'i:»»" ■•'"  l.wn Z- 
I ^««9 Z 
.9«.  Z5.9n9 
9<3. Z5.909 

.013. ZS.POO 

.0«3. Z5 90« 

.943. Z5 000 
P43. ZS 900 
.943. Z5.9P0 

.043. ZS POO 

.943. ZS PCP 
943. ZS.pnn 
.043. ZS ooo 

.943. Z5 900 

.944. ZS oon 

.944. ZS «0« 

944. ZS 909 
944. ZS.OOO 

.044, ZS.9O0 

944. ZS.009 

944. ZS 909 
944. /S BO« 

944. ZS 9«« 

44S 

445 

BB9/oZil 

,99P/oZi| 

909/oZil 

e99/oZil 

.999Ai7il 

«4S 

1« 

k.k««9   .1« olZZi     944.  ZS OW 
k.k..9   il« clZ3i   .944.  Z5.99e 
lulk9-kik»»9 fkfHlkB 
ln.jk9-k«k««9-391 
k.k««9 ol01'il01il/o391i   Ii  445 
tnlle9f-liilei«».lBr*'N>lefc 
U<iilc9«-kilt«..9.39Z 
kfkft^ olOZ'ilPZil/o3PZi   1 
lul k9('kf lcft9.1P3'twlk9f 
Uiuk9<-kfl<;t«9-303 
kflcr«9.olo3'ilP3  1/0303'   1.  <<5 
lul k9=i'l.»lc'«9-IP^'f"'Ic99 
tui)ltl9-kf kf«9  314 
l-»kJ»90l04.il04.1/o39'      1 
tul k9h.k«lc«9 105-ful k9h 
ti.i.jk9h.k»|r5t9.3n5 
k,|i:».9.c|95   .105  Wo30S:   1 
IwllclB'ktle«». IBS'fjllcH 
•,ji.ikl9-kj|c«»9-3PB 
Illicit«.«IBS' 1IP61I/15306.   I 
tulkl9»-k«lc»«9   107-(ulkl9« 
SuuklO«-k«k»«9  307 
k.k«e9.olP7'ilOM/o307;   1.  445 
lul i.l0b'ktU'»9lPB>(ulk;9b 
luuklOb-lfk!i»9.3PB 
l,f |c?fg.olOB'iinB:l/ti308i   1 
UilklZ-kf kft9 109*'ulklZ 
lHuklZ-k«kt»9.3n9 

.   kf|tn9 tilP9^i|P9i 1/P399I   1 
lul k IZc-ktUng. HO*'"! k IZc 
tuuklZc-ktkf«9-319 
k«k«9  tin9'illO:l/o319i    1.   445 
tulklZ»'k«k»*9- lll-'u- klZ« 
tuijklZ»-kf|i:««9 311 
l.»|e»«».oltl«illlil/oJlti   1. **« 
lul|clZf-k«k»«sllZ-'ulklZ' 

luu|rlZf-k«k»«9   31Z 
k.k..9 ollZ"llZil/o3IZi   I. VS 
tuWclit-^ticttt-lli'lui klZ9 
»uuklZi-kfkf«9.313 
kf |r.<«9.all3'ill3il/o313i   I > US 
lul klZlTk»lcf»9lH',"lklZh 
1uu|clZtTkf|cf«9.314 
k»UM«.olM«>114il/Bll<i   I 
lul kl3-k»lcf«9 115>lulkl3 
tnulcl3'kflC!t9.31S 
l>flcfi«.<>IIS«lUSit/oltSi   I 
tulklSa^'Icttg Il6-fulkl3* 
Iuukl3»>k«lc««9 3IB 
k»k5«9 ollfi'iM6il/o31B!   1. «5. 

tul Icl3b'l<f IcMS.Il?''«! It 13b 
tuglc 13b-k»kH9-31" 
kfk..9 "117.1117,1/0317,   t,   445 
tul k">'n-l>lk»«9- llB*ful k»-o 
tMulcAvn-ktlcttf.ltfl 
k.k««9 ollB-illB,l/o3IB,   1. 445 
llklmxn   l.l.|c»»9   119-llHl»'"   I 
ulklmyn   l-lfk"?  319 
k.k««» oll9'ill9,l/o319i   1.  «5 
llk|iii»n Z.krlc«9.1Z0-nH««o Z 
ulklm-r.  Z'k'|i:r«3.3ZP 
ktk»r9-olZP'ilZ9il/o3Z0i   I.  445. 
tul kPff9'kf lefts  1Z l-f "lit P«»9 
tuukPft'),l'iilr««9.3Zl 
k«k«9.olZl'ilZlil/o3Zli   I.   44S 
llHr«»9   l'kfkf»9.1ZZ*fll'|P»«9   1 
ulk lrf»9 l-k«kK9.3ZZ 
k»l':f.9.olZZ'ilZZI/o3ZZi   I-  445. 
tlHpft9 Z«ktk«»9lZ3*nHp««9 Z 
U1HP»»9 Z-ttk»«? 3Z3 
k.k««9 olZ3"lZ3,l/o3Z3,   1.  445 
l<»k««9  ,Z'k»k»«9 oZ 
k»k«e9 oZ'iZ; I 
k«k>*9  iZ-  ill 

1   prtlrpol   Lock«  •hd«»nt.«hduord.uord. 
' ufd«urn.furn.phon.c»'n .»'n   l.»*n  Z 

! .cpf«9.PfC9  I.PM9 Z.M9 
prtlrpol.il'«  olPli     976 
prilrpol.ll« olBZi   -977 
prtlrpol.il' ol93i     977 
prtlrpol. II«  ol94i   .977 

445 

44S.999/oZil 

900/oZ,l 

909/oZil 

999/oZ,l 

909/oM 

999/oZ,l 

.909/oZ,| 

.999/oZil 

909/oZil 

900/02:1 

poo/cZn 

.*M/^Z,1 

.999/oZ,l 

909/oZil 

990/oZil 

009/,oZil 

99«/oZ,l 

909/oZil 

44i 

4<5 
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pr 11' PC 1 oins. (<77 

pr»Irppl. oins^ e?; 
rr c 1 r po I ■ 0107, ,»77 

pr 11 r po | rinfli .077 

pr ■ 1 r pr 1 ol09i 077 

prt kpnl PII«, »77 

pr « 1 r pn 1 . Olli: »77 

P' t 1' PO 1 ■ OUT: 077 

pr 11 r pn 1 oll3i 077 

t U !•'■ !*•■•' -I • «!■ i"il    IOl-rU IfhdHlt 

ull jtMimfprtirpol    901 
prt|rpo|.ol0l'>I0|i|/o3O|i    I,    31   O00/o;>l 

I Ik l«MiiordT<-t|rrol   lOiMIHibdword 

U I k I Jhduor d- pr r I r PO I . J'V 

crtirpni oior*iiorii/o3o:: i. ji.ooo/o^ii 
lU luord'pr«l'Pol   m-Oiuord 
uU U«<rd-P'»l'prl   303 
l;r»|r,ol  ol03"IP3:l/c3O3i   1.  31.000/oM 
Ilk ll -H»urn«pr»|rpol   I0<» ( U I wr d»urn 
ulk JHr^turnktrflrCtol , 304 
pr»kpd   ol04.,|01i l/o3'<4i   I.   31  OOO/oM 
(lUturn.prtlrp-l.lOS'nUturn 
ullr|furn»pi-f|rppl. 305 

pftkpol  olOt., 105, |/o3nV   I.  31  »0«/nM 
llk|pH<-n.prt|rpol    106-f IHphoo 

■ j |i If Son»pr f |r po]    306 

prjlrcol  ol06-,|OS: l/oSOe^   I.   31  OflO/o?! 
twl |r«.n.pre|fpnl    107» fwl |r.«»n 

1 wu lcw»n-prt kpd ■ 307 
Pr»|rrol.ol07.,)071/o3O7:    ).    31   «OO/o?   1 
UH«.n   lTr»|rpol    lOB-MH«»"   I 
uUlff-n   l*prc(rpol. 308 
t.'«irpoi.oiee-'U>ii:i/o308, i. 3i oeo/oM 
llH»-n {•rrt|rp«|.|M*fllilaMi ! 
ull U.n   Z-prtlrpol   309 

prtlrpc>|.0in«ilM>l/eJNi   !■  31 OW/oM 
Iwl IrPftq-PftI'pol   HO-lul IcpfM 
twulcpftg-p'ftrpolSlO 
pr«|rpol  PllO',110, Wo3IO;   I.  31 WO/oJ' 
tlMp»«   l^prtlrPll   III>(U|PH«   I 
ulklpfr?  l»p*-»kpol. 311 
pr<|rp«l.Olli-,111,1/0311'    I.    31    ««O/o?   I 
nil,."* ?>prikpoi nr-rikiPHi ; 
u|k|p»«g   2*pr»|rpol . 31t 
prcirpoi.oii;>,iir,i/o3i;, !■ 31 e>w/o.' 1 
t |l>|««t*pra lrvol.lt >• MlilMfl 
ulk If^q*rr»|rpril  313 
prt|rpal.olU«ill>il/«llli   I'  31  OOO/o?  1 
prplrpol    ,r-pr«|rpol   0? 
p^pUpol   Ot • )?I 1 

ktluv   l>vk Ikiluvprilrpol   901 

pftlrtol. iZ-oDOl,   ,37S/o3,l 

prtlrpol   ,?»o3;   ■fiC* 
pr»lrpol .    :)■ r'f I'inl   nl 

prtlrpol   o3« ,3' 1 

pr 11 r po 1 . , 3«    (111 

1  Vtluu Lock» el t2.c4.c5 i:7.c7»,c7b cB. 

! c9 c9..c9r c99.c9h.cl0.cl0i.cl*b. 

! cl .clltcllb.clU.cllf.clls.cllh 

1 t\Z.mr,., iri.cl?f clZj.clZhcll. 

i cMi.cMb 

klluv. ' olOl, »31 

kllu»- oio;, 031 

ktluv ol03, «31 

ktluv. ol04. 031 

klluv. oiet. 031 

kfttuw. ol06, 031 

ktluv. 0107, 031 

kfluv. oioe, 031 

kffluv. olP9, 031 

kl luv. ollO, (•31 

klluv. (•111 «31 

ktluv. oii;> »31 
ktluv. 0113, 031 

ktluv. olM> 031 

klluv oils. 031 

klluv. oil«, 031 

klluv. ell7i 031 

klluv. oil». Oil 

klluv all9, 031 

klluv olJ«, 031 

kiluv.,1- ol21,    »31 

ktluv   ,!• ol?2,   .»31 
ktluv. il> oin    .031 

ktluv.il> sl24i    031 

ktluv.i|t ol?5i    632 

ktluv.lit ol2Si   .032 

ktluv  il> 0127,   .032' 

ktluv.,!•  oi:»,    032 

ktluv.,]. ol29i    »32 

ktluv.,!•  P13P!   ■»32 

ktluv.i|t ol31i    032 

ktluv  ,1. ol3:,    »32 

i«lltl'ktluv  101'fullcl 

•uulcl-ktluv 30| 

kiluv o|Oi.,|fl|:l/o3ni,   1. 134 »»0/o2,l 

t«lle?*ki|,jv.|92.fMl(c? 

»u.j|r::'k|l,jv.302 
ktluv ol0?..|OM/,3O?i   1, 134 »»e/o2,l 

»Mlk'-ktluv  103'<-llc4 

tuuld-ktluv   303 

ktluv o|03..103  1/3303    1. 134 eee/o2,i 
lulkS-ktluv  10<.(N1|C5 

tuulc5-ki|uv.304 

ktluv.olOl.,|,'4: 1/O304I   1 134 e»e/o2.i 
«Hllc7.kiluv  105'<,<llc7 

tHulc7.ktluv.305 

kiluv.pIKtilPSil'pJMi   1. 134   »»»/o2:l 
«Hllc7»*kiluv.|0S*»nl|t7« 
tu'ilr7«.k»|,,v.306 

ktluv.rl06',106i1/P306I   1. 134 000/o2,1 
»MlicTt,.ktluv.107.(MlU7b 

(uult't-k«luv.307 

ktluv  nl07.,107,l/o307,   1. 134  OOO/oJ:1 
(ul UB'ktluv   109-<«llcB 

tuulrB-l tluv   309 
ktluv   olOB',10»   l/n308;    |, 134 «99/o2,1 
l.4l|t9-ktluv    10<)-tMl|c9 

Iuulc9>ktluv.309 
ktluv.Ol09>,109:l/o309:    1. 134.a09/o2:l 
t»llr9.-kl|.,v    IIO.(ul|c9« 

tuulc9**kt|uv.llfl 
kfluv   Oil«',110:1/0310:     1. 134  OOO/o.-, 1 

I,.llc9<-kiluv  Hi-fi,llc9f 

tuulr9<*kiluv.31t 

ktluv olll.,1111/0311,   !■ 134.!»»«/o2,l 
U,l Ic99>ktluv. lU'lHllct» 

t«ulc99'kt|uv.312 

ktluv.olir'ill2:l/o312,   1. 134.9»e/o2,l 
Iv,llc9h.ktluv  113.fMlk9h 

1>"j|c9h-ktluv.313 

ktluv oll3-,113,l/o313,   1. I34.B»O/O2,1 

U,l|rin.k||uv. IM-fulId» 

U.,jk|0.k,|uv.3|4 

ktluv  oll4.,114,1/O3I4,   1. 134.»99/o2,l 
IHI IclOfktluv  115-rullcl» t 

lHulcl»*>kt|uv.8ll 

kiluv.D1IS',11S:1/O315'   1. 13' »99/02,1 

tullclOb-ktluv  116-( ,llcieb 

U<ukl0t.-ki|u/.31S 

ktluv ollB-,116:l/o31B,   1. 134.999/02:1 

»MIICII.ktluv. ll7.fnMell 
twlcll'ktluv.317 

kfluv.0117.,117,1/0317,   1. l34.»»»/o2,l 
tul|:lll>ktluv.llB>rullcll • 
luuictu^duv.aia 
kiluv.ollB'llB:1/031B,   1. 134.»»e/o2il 
*nllcllb-ktluv.ll9-fullfllb 

(Hulcllb-ktluv.319 

kiluv.oll9.:119,l/o319,   1. 134.809/02,1 
lullcllt.'-tluv. 120.ful|cll t 

tuulcllfktluv.3"0 

ki|,v.ol?0.,120:l/o320i   1. 134  OOfl/oM 

)u||clir>kt|uv.|21>rul|cll r 
twltllf.ktluv.321 

ktluv.ol21.,121il/o321,   1. 134.»99/o2,l 
tHllcll|«lr«|uV.U2>(ulletl 9 
lMj|clla*kt|uv.322 

ktluv.ol22.,122:l/o322i   1. li-'. 999/02,1 
tullcllh>ki|uv.l23>(Hllcllh 

tuulcllb>ki|uv.323 

kiluv.ol23'il23,l/o323,   1. 134 000/o2:1 
lMllcl2-kilu  .U4.ful|cl2 
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IWllCtt'l'f |UV'W4 
kfluv.olZ<'il?4l|/o3ri 
(Hiicizckduvin^rwiic 

k»luv O1J5«I1Z5I|/P3?5 

luulclZfVflwv.KI 
i'tiuv.«in>imi i-'o3:6 

«►.jlrlZf.t.l.jv.az: 
k»luy  ol?7«.|Z7il/o3?: 

Iwlcl^flr^luv  3:8 
tii>jv.oi?g-,i:8>i/»3:B 
lullti:h.li|uv.i:9-ful|c 
iHulciitwliluv.KI 
•■«IUVOIZS-IICS l/'o3?9i 
(ullCl4>b«luv   |3(>-lu||cl 
(wuleM.lflu, 33p 
•■•Igv ol30*it3Q> I/P330: 

(MllcH».tiluv  131-fullc 
(uulf Mi-t»luv.33l 
kfluv.fltl'illlit/tllli 
(ul|cMb>l>iluv. I3;>fullc 
lKjlcMb-kfluv,33Z 
••tluvol3e«il3r  1/033?. 
ttluv.iZ*kt|gv.o? 
i- pi'iv f..-.,;  | 

btluvij«   .li| 

I.   134 
12c 

I     134 
l!i 

I.   114. 
I?f 

I.   134 

!?!> 

1.   134 
12h 

1.   134 
4 

1.   134 
|4| 

1.   134. 
14b 

eoo/cZii 

MW/o?i| 

»W/oZil 

»0«/o?il 

op«,-: i 

»W/oZil 

«•O/c? 11 

M>«l/fZ.l 

i. 134 we/oz.i 

pr«it»« .i.» oieii   rso. 3s "no 
petit«».il.  olO?:     rio.  3S PP« 
prtlt»'j   .!•  (,in3;     ?S().   35 00« 
crtii,,. ,i. (|«4, .up, 3s eoo 
l"lIcpft9"pr||?t?.IPl-lulIcptti 
l»Kjlcpft«i>rrtIftti 301 
»rtU*('»lt|til9ii|/«W|i   I.  |0«.(tW/o?.l 
UtlPfts l-Pftltt» inj-fiup»«« | 
ulUptt» l>pr«Mis 3n; 
p'tittsriorniez.i/c3«?: i. loo.we/oZii 
nuptt» z-Pftitu ie3-fuiptt» i 
ulMut» ?-p-tl«.=i  3»! 
prtitt» i>i«3».io3ii/93»3: i. leeew/oZii 
t 11- lt«vpr«|ttf   Id«. ( |V lltl 
ulkllt»-prtlt«9   3«4 
prtittnoiw-.i^ii/o3«4. i, leene/t?.! 
prtltt».it«»rtlitf-*2 
Pf tlttfl    0?" i^: 1 
btlWf. !•»* HtlttJ-prtlltf  901 
prtl«t»,i?.o9«l-l/o3il 
prtlrtj   i3'rrtltt»  «3 
pr* )rt9.o3"i3i 1 
ftlttj. ij«   >li I 

'  htlft^ Loclt 1*4 
l.tlt»». il-t ol91i   I 
tUlttf^ilttsiei-ribiti« 
uUlffv^ilttt'WI 
bllM«.«ifl«i|*|i|/»M|i   I-  4M((WI/oZil 
liflttt. iJ-Vtltts oZ 
l>tl»*f.«2*i{i 1 
btiMriti oiezi i 
tUlMt'lrtlm». l*Z«fU|M| 
uUlMt>b(|t>».MI 
ktitt» oiez-.iez.i/oMZi i, ««o »««/os i 
l«lt»»    >3>lrt|l«f   o3 
litlMf  03- i 3   1 
btlnf. i3- 0193:   1 
iibi>tii-i.iitt«.iA3>ni.it«f 
ull llM*hflt*fl*l 
l.tU«9.<>l?3'.lB3.1/t.393i   I.   400 (IW/o4il 
kf Iff«. .4«l.i|t»».o4 
kttfts o4«i4i1 
Vtllt»   ll«  ol"4i   1 
IlklMt^itl*««' IM-'lHtu 
ulHttj-l-ilt», 304 
i>iiit9.9ie4.,iA4:i/o3eii i. 4M em/osi 
ktlto iS'i'titt« oS 
biltt'i o5«<S> 1 
ttltxf.'S»  I|II 

1  p'tlutb Lorkt i:4.c5 
prflulb.i|tl oieii   .50« 
rralutb. '1« olOZr    SM 
«ullc4.pr,|,j|b. Iil|>ru||c4 
luukt-p. ,|utb.3Cl 
pr«iutb.oiei-iiotii/o3eii i. se eoe/o.'-i 
u.l U5-prt lulb. 10r.(ul leS 
iHulcS.prtlulb»? 
rrtiuib oiw-iieM/osezi i. u »e/oZii 
p^tlulb.iZ>pr»|utb.o? 
rrtlutk.oZtiti1 
V'lutb.l.vUktlutb'prtlutb 981 
P'tlutb. iZ«o9C|i   .P5:.68/o3cl 
prtlutb  I7«P3I    943.6n 
prtlulb.i3»Prtlulb.o3 
prtlutb   o3"iJlI 
prflutb. ')•    I ll I 

1  ttl'jtb Lotlt cr.c3.r3».c3b.c4,e5.c6. 
c6«.r.i;r.':S<l.rSh.cl3.Cl3«.r.|3b 

ktlutb   ll««  olDl       871 
ktMb. ii- oieri .MI 
bilutb.ll« olf3    .071 
ttlulb. i 1«   ol04i   .1)71 
ktlutb.ll« elOSi   .071 
btlutb.il« ol06<   ,071 
ktlulb.ll«   ol07i     071 
kf lutb   i|«   i.H'h     .071 
t-f lu«b. ll«  0l09i     07? 
ktlulb.iI«  olIOi    .07? 
litfutb. ll«  »Uli    .07? 
ktluU.. ll« olIZi   .07? 
•-»lutb. i|« oU3i    07? 
ttlutb.   1.  oll4,    07? 
tulkr-ttlulb   101'fullr? 
tMj|C<>k(|ytb.ni 
■'•lu(b.«ltl«lt*|i|/«W|i   I.  3«09e/o?i| 
«MllcS-l'tlutb.lor-rulkS 
«•'ul(.3>i>ilutb 30? 
lil'<tb.ol0?»il0?:l/o3O?..   |,  3e.OO0/o?il 
lul IcScbtlutb. 103-ri,l|c3« 
Iwulc3«*ktlutu. 303 
l'tlu(b.olO3'.|O3il/o303i   I.  38.000/o?il 
tnllc3b'l.flutb.l04.(ul|c3b 
tkiuldb-kilutb 304 
ktlulh.r.|04.il04i|/o3O4i   1.   30.O00/o?il 
<"lk4.l,tlutb.l05-fwllc4 
luule4>kilu(b.M 
t-»lu(b.ol0S'il0Sil/o3O5i   1.  30.«00/o?il 
("Ilc5-i'ilutb.l06-f«lk5 
»Mjk5'.i'tlutb.3n6 
Vtl'j'b  ol«6-il»6.|/o306i   I.  3e.O0O/o?il 
t"l kR-ltlulb. I«7.tulk6 
twulcB'ktlutb.M? 
l«luU..ol«7.,|B7M/o3P7i   1,  30.eoo/o?il 
lulkBt-l'iUlb  ji^MulkE« 
luulcB««l>i|ulb.M 
••«lutb oioe-iioo: I/OJOBI i. 3«.eeo/o?i 
lulkS<'l.«|uib.|09«(Mlk6( 
luulcG(-l>lu(b.3n9 
ttlulb.pl09-il09: l/o3P9i   1.  3O.OO0/o?il 
lul k6^»l.f|u(b.ll0'»wlk69 
(nukB?*k«iulb 310 
ltlutb.ollO'illOil/0310:   I.  3OO00/c?il 
lHl|c6h>li>lulb.|ll«rHllcih 
tuukBh'lf luib.311 
ktlutb-otll'illlil/ollli   1. 30.0ifO/o?il 
t"lk.l3'Vtlu'b. l^'fulltlS 
iMllclMtlWtb.llt 
I'«lufb.*ll2«i||2i|/«i|2i   I. 3O.O00/o?i| 
«ul Irl3fl.»|ijib.ll3'fulkl3» 
(uwlelh>l>i|ulb.|ll 
kalutb-atlltiUlit/tllli   I. 30.O<W/o?.l 
(ulkl3b-l'tlutb.ll4>(Ml|cl3b 
Imkl.3b-Vi|u(b.3l4 
k«lwib.oll4.,|14.1/o314i  1,  30.0ee/o?rl 
ttluii. ..■•i.tiuib.or 
Wlu(b.o?«l?il 

071. 30 000 
»71, 30.000 
»71.   30.000 

l<«lu«b.i?- ol.'Bi 
btlutb.■?• olIBt 
kvlutb.I?« sll7i 
ttlutb  I?« olISi 071,  39 000 
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Wtluth. iZ- oil»! .Wli »««O 
kflutb. >Z* el2«i (•71. 39W 
^•lulb.iZ« oL'li .071. 90.00(1 
ktlutb.ll> oUZ' 071. 30 «0 
b;luU..i!> oU3< 072. 30 000 
ktlutk'){• Ott*) 07;. 30.000 
k«|«tb. it> Olli■ 077. 30.000 
ktlwtb.ll« olJB .072. 3000« 
ktltilb. It* «IX?! 077. 30 00« 
ktlMtb.i7" 9\ZBi .077. 30.000 
lHllc7>kt|«lh.llS>rul|el 
lH«if(>ks|ult>.lll 
kcMb-ollS'illlil/Olili   1-  ISO.000/o3'l 
lHllcl>kt|iilb.lll*(ull(l 
lMilcl4«i«ib.lll 
krlutb.ollS->ll£it/o3lt:   I.  IM.000/o3 I 
(unc3cliilulk..ll7><ul|c3* 
tHulc3»>liilulb 31V 
bflulb.oll7->ll7tl/<.317.   I.  ISO 
)Mllc3b>^ilg<b llt'.'ullcSb 
(wulc3b>b«|u(b.3ll 
t.|.,U.   nllB   .118: Wo31B:   I.   ISO 
Iwl Ic1*k»lwtb. 119-»ullc1 
»Mulc^.kiluib 315 
ktlu*b.»llt«tlll'l/**l|i   I.  ISO 
(uikS'V^iuib iro.fuiits 
«MUICS'. il'jtb 370 
b*|uib al70-il70i|/«370:   I.  IS« 000/o3 I 
lHllrt«ktlttlb. IIIWHIIH 

iHulcl^tlvtb.Ki 
kf|Hlb.oi;i»IZI>t/oKli  1. ISO 
lHllc6*^«|gtb ir7>(ullcG« 
lHulcSo*k*|it(b.l2Z 
Iitlulb.<>177'<t77>l/D37?i   I.  IS« 
U.llc6<>kf |ulb.l73>«MllcS( 
lMilc6(^hilutb.373 
Vflutb.ol73'>l73<l/o373>   I.  ISO 
«ullcGf.lflutb K'^ful IcE« 
«.■ulc6v''»lu'b 3'' 
ktltt<b.»IZ4«ilZ4i|/tK4i   I'  ISO 
I. II   r.t.-l..l..U    i;S-(M|r6H 
<wuli:Bh-Vi|.jtb.375 
kt|«tb.*in>iinii/»K>>   I-   ISO00O/o3:| 
lMllcll>k«|H(b-in*(Ml|cll 
(uulcl3>ttl'j(b.376 
k.iuib oi.-B-.irs i/t>3:6   i. tso 
«ullclSa-bllulb  I77>(til|cl3* 
tuulcl3cb>|u(b.377 
Li|ii«b.ol77'il77il/o377i   I.  ISO 
(u||r.l3l>>ViMb.|7B>(Hlkl3b 
t>.ulcl3b'lrt|ulb.3re 
k.lulh    1.irB-.|.,l.     1  'nl.'B        I.     ISO 
liilulb. >3-l>«lulb »3 
ktlulb.o3-<3>l 
ktlutb.i3- oirSi    071.  30 000 
ktlutb.i3* ol3ni    071.  30.000 
l-ilu»b.i3« elSli    071.  30.«00 
W*lutb.<3> ol37:   .«7|.  30 000 
l-flutb. i3- ol33i    071.  30 OnO 
ktlulb-il* »134!    071.  30 poe 
Wilu'b. .3> ol3Si    071.  30 «00 
t.l.i't.   .3- 0131J      071.   30.000 
ktlxtb.ili »137:   .077,  30.000 
■■tiutb. >3' o!38'    077.  30.000 
ktlitlb.ll« ol39t   .077.  30 OOO 
ktlulb. i3* oMO:   .077.  30.000 
Iitlu1b.i3' oMIi    077.  30.000 
|.>|utb.i3* (KZi    077.  30.000 
tHllc7>btliilb  179>rHllc7 
lwj|c?-bi>lu(b 379 
l'tlulb.eil79'il?9il/o379i 
it.l IcS^dulblSO'fullcS 
tuulc3>l.ilu(b.33n 
I'«lu<b.ol30'il30i|/o330i   I.   ISO.OOO/olil 
(Mllc3»>ki|ulb.13l-(«llr 3, 
lHuU3cl>>lu(b.33l 
Iiilutb.el3l-il3li|/i>33li   I. 
(ullc3b<.kt|u(b.l37>rull<:3b 
tMij|c3b>»'tlu(b.337 
I'«lutb.0l37>il37i|/e337<   I. 
tMllc4>l<tlu(b I33>(MIIC4 

lMulc4-.bcMb.133 

»00/o3>l 

OOO/oJl 

OOO/oSI 

O00/o3' 1 

000/113: 1 

000/1)3:1 

Oon/o3il 

000/031 

000/031 

tOO/o3 1 

I.  ISOOOO/o^l 

iso.oeo/oi'i 

ISO 000/olrl 

I<ilu)b.ol33«il33>l/o333i   I.  1S4.00V«4  I 
«ullcS-. /lull.  Ul-fMllcS 
(uulcS'.|'«lu(b.334 
t.lull. 0134.,13VI/o334.   I,   1W»"00/04,1 
l..l|tr>-l.luib  13S-fulkB 
tuulcE-l-tlutb.33S 
l>f lu(b.ol3S'il3Sil/oa3S>   I'  IS«.000/o4r< 
lMMrB..l..luth.l36-U.k6. 
luulc l,«.t> lutb   336 
V>lulb.ol3e'>136>l/o336i   1.  ISO ,4>0/o4 ,1 
i,,i i. I,I.. . iuii. n.'-i,.i i.bf 
tHuk6(>l.tlu(b.337 
l,»lult.ol37.il37.1/0337.   1,   IS».000/o4.1 
IMI Irr.-.-l-.lull.   138-(ulkBg 
lHulcM»k»lu<b'IN 
bduib nl38<.13e.l/o33e.   1.   .S« OOO/oV 1 
)ul k6h.|.<|,jlb. 139>(H1 IcGh 
tv.uk6H.lrslutb.339 
l<«lutb.ol39-.139.1/0339.   1.  1S0.000/O4.| 

tMlkl3>l,>lulb l40>(Hlkl3 
• uukl3.lrtlutb.340 
lr«luib.ol40>.M0.1/o340>  1.  lS0.e0O/o4.| 
lHllclla>k«|ulb.HI*Mtello 
luuk n.-uiutb 3ii 
Imlulb ol41'iMlil/o341i   1.  lSe.00e/o4.l 
(ulkl3b.lrf|utb.l47>'ullcl3b 
U.ujr   13b-l.tlutb.31? 
krlutb.Dl4?'il47il/o347.  1.  150.000/04.1 
ktlutb. .i>lrtlulb.o4 
(•tlutb o4.i4il 
kt lutb. i4<   d.l 

1 i- 

w» 
r. » 
pr r 

pr* 
prt 
P' » 

(„1 
(,., 
fr » 

t,.l 

l.KJ 

( '  f 

IHI 
U.M 

rr c 
(Ml 
1.«, 

f« 

t.rl 

t W.J 

rrr 

(ul 

I.«J 

rrt 

r^e 
t* • 

k«ll 
prp 

kfj 
prr 
err 
pri 

pr» 

pr» 

tlMC Lockt c3.c3i.c3b.c7.c7*.c7b 

ptc il" olOl: . 166 
166 
1G7 

1S7 

167 

167 

ptc .1" ol07. 

ptc- 11« ol03. 
p«r.t|t olOl. 

ptc..1« olOS. 

ptc.11B 0IO6. 
c3.pr«|pic. 10|.(Mlk3 

c3.pc»|ptc. 301 
Ptc.al0l-il0l.l/o301.   I. S0.000/o7.l 
L3*.pr*|ptc.l07>(Mlk3* 
c 3». ci'* ktc. 307 
Pfc.ol07«.10?.|/o3e?i   I. 50.000/07.1 
cSb.pc.lptc  103.(Mlk3b 
c 3b*prtIctc. 303 
r»c ol03'.103:l/o303.   1.  S0.000/o7.l 
c7-prtlP«C.I04.(Mlk7 
c7.prr|p<c  304 
p,c.olOl'.104.1/0301.   1. S0.000/o7il 
r7,.pr.|Ptc.lOS'fMlk7» 
c 7t.pr«|ptc■305 
ptc olOS-. IBS. l/o305'   I. SO.000/07.1 
c7b.pftIptc.lOfi.fwlIcTb 
c'b*pr«|ptc ■ 306 
pr-coioc ,iof.i/o306: 1. so.eoe/o7.i 
ptc.i7.pct|ptc.o7 
Ptc.o7« i7i I 
ttrch. kvV jirtltetccH'pr'Clptc.SOl 
Ptc..7'o90l.   .130.135/03.1 
.M«. l.vkIkt11(Mt.prttPtC.SO? 
PFC.i7'a907.   .130.135/03.1 
PfC.i7>o3.   .740.135 
ptc. 1 S.prclPtr .o3 
ptc.o3'i3.l 
ptc.3«   '1:1 

ktltxrc 
el. 
cB 

tltttrch. 
BlMarch. 
tltttrcH. 
•ItVtrch. 
tltaarcH. 

• Itcarch. 

altaarcH. 

«Iraarch. 

■Itaarch. 
fltaarch. 

h Lockt 1 

c6«.c6(.i 
cl3.cl3* 
.l-t olOl 
il- old.-- 

H« ol03. 
I|a ol04: 

.1-    "U".: 
I|a 0IO6. 
I|a el07i 
ll> OIOB: 

II« 0109: 

II*  oil». 

7.c3.c3a.c3b.c4.cS. 
B9.c6h.c7.c7a.c7b. 
cl3b 

5«. 000 
Sfl.ono 
SO.OrtO 
50.000 

OSS. SO 000 
.055, SO.OOO 
.055. 50.000 
.055, 50.000 
, Pao •   BO ■ W™ 

ess, so eoo 

.«ss. 
OSS, 
055. 

.055, 
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.OSS. 
«56. 
ess. 
nss- 
ws. 
Ki- 
ns. 

s» wc 
SO.COP 
S9.«00 
SO. on« 
SO. 000 
5« 00« 
SO 00« 

I.  II«« 

II«« 

I.   Ill 

WtUitrcV il> olll. 
tiltivch. >l- <ilt7> 
k«l«««rc)<. il> ellli 
li«lf««rch. il> olMi 
ktlftweh. i !• ellSi 
Vf!»••'ch.i|" olISi 
Vplfevch  il" oll'i 
'-'.•• eh ■!• oil« 
lHtlct>l>*lM«reti,|l|>lwt|(| 
»uu kZ'I'iltttrch. 30| 
b«lu«r(h.*l«t>il(li l/oWh 
lHll(l>li||nirch. |H«fHllci 
l-ulr1.kfll.wch.30J 
i.i.... ,h OKC-, i«:, uoao:. i 
I>illc9«^i|f*arch  Idl-l-l I, ). 
IwililcbttMtreh.lU 
k»l»»wtlvi)l03>.|03il/o3O3'   I 
lullt3b>bili»arch   ie4>(u||c3b 
luult3V.-l«ltt»i-ch 30« 
lf.lfc»rch (il0<.i|04.|/o30<i 
liillc4^flM(rch. |OS*(ul|c4 
«Mulc4'k||«»irch  30S 
'. »ij.irch clOS'i|05. WoSOS' 
tMlUI*ktlt««rr»i. lOS-fuljcS 
lMulct>l'«l»t«rc*>. 306 
ktlwcrth ';|0('l|06>l/c3«6 
«ui>fi.k>it««rcs inr-fuiic« 
tuukfi-tlUtvch.307 
i.«i»t».ch.<)io:..io:M/o3t)r, 
IHI IcGf kl|>ttrch   lOB'ful let« 
ti«jk6»'l.tl»»«rch   30« 
1-I1....H    fl.lS-. |l>fl     1  /njll«       I 
lul lclf>k«|wv(h. log.fuiicg« 
i....j,f,i.i,if,„,., jiig 
U.U««rct. oiog.,!!.?  l/o309:   I 
lMilcM^>«|(««rch,ll*>tHllclt 
1W::6<..I.»I..K-CS  310 
k.I..„fh   oil"-. 110:1/0,110:     | 
<Mllc6h.l.»li»»rch Ill-'wllcSh 
luulc(Sh>kf |Mtrch.31| 
l>«lHir(h.«til'illlit/*illi   I 
lHl|c7«l>«l«««P(t«.IIZ«fulU7 
luulc7«trtl««V(H.tlt 
k«|Mar(h.»||;>l|IIi|/(tl{i   I 
(ul |c7«*li«lf««rt*>. 113>'ul Ic?« 
1uulc?»*lil|tt*r .K   313 
lr»|M«reh.«IINilllit/«ll|i   t 
lMl|r7b*litlMvch. IM-fullcTb 
iHKlcTb'kflMarcH.lt« 
k«l««ir«h.«tM'ilHi|/«ll4i  I 
tu'lte-k.Ut.nS   llS-(u||c8 
«uulca-.|.ll>t*ch.3IS 
li«|«»«rch.ollt«iliSil/ollii   I. 
(ullcl3>|.f Ifftrch IIS*f-llcl3 
lMllcll*l'«|«««rtli 3IG 
I'llMW-ch.ollE*  HSil/oSIS    *. 
tullcl3*>l<tUc*rch  IITMullctl* 
luulcll*>k«|H«rt»< 317 
li«|surch.»||7«ill7i|/*IUi   I.  11«« 
UillclSb'ktlftarch.lie-rHl|cl3b 
tMul(llb*lrtltMrcH.|il 
tiln..^    oUB-llB:  IVI'S'     I.     II«« 
kdtKrch. it*l>i|w«reh.«I 
t «I «••' rh   o?" 'T    I 
li«|M«reh, It« ollS: 
kill»»- rh II» sl?«i 
Irtlatarch..;« g|?li 
kilaaarcH.■?• ol??: 
kslHarch. iZa oi.'l 
tolaaarch i2> el24i 
taliaar rh. IZ«  ol2Si 
k«l«««reh, IZ< III2E< 

lifltf»rch.,7. oi:?< 
kolMWCh. 1?"   QlZtl 
k«|M«rch. iZ" ol?9< 
Vflfaircn   iZm  (i|30: 
k»ti««rt>i. iZ> olll 
kt|«««reh,>Z« oi > 
kiliafch. iZ» ol33i 
k«lM«reh. iZ' «IWi 
kalaaarch. iZ« ol3Si 

kalaaarch..?■ ol36i 

0O«/o2: I 

000/oriI 

no« »oe/oZii 

I, II««»OO/O;.I 

OfM/oM 

«OO/oZi 1 I     II«« 

l. nwooo/o: I 

iioo eoc/oZM 

1100   0««/0?:1 

l!00 OW/oJil 

II«« 

1100 

«««/oZil 

0O0/o?.l 

110«   0«e/o2:| 

1100 

n«e 

UP 

eoo/oJ.i 

oeo/oj.i 

BOO/O?:I 

00«. oi   | 

««•/«J. I 

«SS. .00  00« 
«ss. ?oo.ooe 
ess. ?w ooo 

.oss. ZM.WO 

.055. J00  10« 

.«55. ^eo.oo« 

.055. JOO.ono 
055. J«o.«0« 
OSS. roo ooo 
056. 200 »n« 
OSS. ion ooo 
058. J00 ooo 
OS«. ?00 000 
OSS. Z^O.oo« 
«56. :»o oo« 
056. ?oo oo« 
056 J«0 00« 
«56 ;««««« 

tutlc2-.ka|it«rch.|IS.fwllct 
t"ulcr-l..l..»rch 319 
l.»l«aarrh.(,115.ill9i|/oJ19i   I.   1100  OOO o3:l 
tMllc3.MI..,arch.l?0.(..llc3 
'":ilr3-ltl.»arch.3;fl 
ii»ii*arch.oi;«-ii?«ii/,.3?ei i. iiM.««e/oiii 
«MllcScktlitwch.lJI'.fullcS* 
<viulcl*>bi|iiarch.J2t 
k«|««irch.«IZI«liZtil/«IZIi   1.  ll«0 OOO/o'.il 
(..Ik ll.-k.UfKrr.,  l7;-(ulk3b 
(iKj|c3l-l<f|ft»rch.3.:2 
t»lM«rcli.«IZt*IIZZil/«KZi  li 1100 OOO/olil 
twl It^.kalttarch. U3.fHl|c* 
luul(<*k«|H«rchiKI 
k»l»ira'th.til23.ii:3i|/o3?Jc  I.  110«.«0«/i>3i I 
tulkS'kal««arch.i;4.fu||cS 
ti«j|c5'k»li«trch.32< 
Vil»»arrh.olZ<»iir4[|/o324i   I.  11««.«0»/O3I 1 
twllc(>l>t|M«reh.tZI>rMl|cl 
tuulcC'kilMireK.Ki 
ktlt*«rch.alZt>ilZStt/«IZIi I. noo oeo/o3:i 
IMI |et«>k«|«mreH. i;6>fullc6a 
tuulcSv^lalaaarch.3r6 
tt 1.-^. . K   „1.-6-. ITS: 1/0376:     I.    1.00   000/03:1 
Uil |c(f>ktlt«areh. I27*(HI|CII 

(.iulc6Ul.al.»llrch.3Z7 
l'»l«»»rch.ol?7«il?7c|/o3r7i   I.  ll«e.«Oe/o3il 
(..llcF.r.-l..l»nrch. 1,-B.(,.llt6s 
liiulc69'l'«l»«af ch. 'JPB 
WUr,,    h   oirB':l.-8-l/ol.'B     I,   1100  000/03:1 
tMl liRh.t.li.ar   i.  in. (wll'6h 
1u.jlc6h.|-»|n»rch.3:9 
l.ilit*rch.iilZ5.iK'9i|/ei3Z9i   |.  Il«0.»00/o3! 1 
twlk7.v,|f,r.ch. l30>fMlk7 
ti«/k-7.1-.|,.»rch.330 
l'«l»»«Th.(ll30»l|3ni|/o330:    I.    Il«0«0«/o3:| 
«ul|c7a>k«|Marrh.|||>ful|(7« 
tuulc7a>kt|tMrrh.III 
k«|Marth.*||iai|tii|/i|||i   I.  I|00.«e«/o3il 
lHlicrk>ktftn«rcti.llZ»fHllc7h 
luuk7b.|.«l««.«rch.33J 
Lfliaarch.ol3r'il32  l/tttZl   I.   1100 OOO/ol  I 
lul kB'ktlatarch. lll.d.ll.B 
t..olrB.t.|.r.rrh   313 

kM«r„rt,.olll-. 113: 1/0133:    |,    llOOOOO/ol    1 

lwl|ell*ksl«Mrch.il4>rHltill 
IMUIC l3.kt|faarcH.334 
k»Ut»rcli.ol31«il34il/o331i  1.  llOO.eoe/oSil 
Uilkl3a*kf|faarch.|3S>rul|cl3a 
IHUIC 1 1a-k» I »rar f h  33S 
kfk*arcH.ol35*il3S.|/i>33S:   I.  11«« OOO/ol.l 
lul IclSb-ktlfaarch. ISS-lulklSb 
I uu k I Sl-.ta I aaarch. 336 
ktlfaarch.ol36*.|36i l/o336:   I.  1 IflO.OOfl/ol: 1 
kflaaarch   i|>k(|March.«l 
kflaaarch.o3*.31 
k«l(*«rch..1-   iliI 

1   k«| 1 -«a  Lockf   i . .c3.c3a.c3b.c4.c5. 
1             cGcGacB« c69.c6K.c7,c7». 
!             cTb.cB.cIS cl3a.cl3b 
kcMiM. .I" olOl 055. 50.00« 
kalliW. il» oiori .055. 50.000 
kaitiM.ila ol03i 055. 50.000 
kfltim.il' olOl, OSS. SO.OOO 
kaII■*•.i|a olOSi 055.  SO 000 
killlaw.ila ol06. .055.  50.000 
kflli-t.l- et«7i .«5b.  50 ooo 
kailimm. i|a  olO«. 055.  SO.ooo 
kflli»».il» ol09i .056.  50.00« 
kfltira.i|a olio, .056.  SO.OOO 
kcKlM, l|a  «Uli .056.  50.00« 
klUiW.lla  oil? .056. 5» 00« 
klltlM. l|a   ol III 056.  5« «00 
lifltlM.ll>   olMi 056.  SO.««« 
kf It im. I|a olISi .056. 5« 00« 
kalliM   l|a   oll6. 056. SO OOO 
kcltlM.lia oll7i 056. 50 «0« 
ktltlM. ll-   Oil«: «56.  5«.««« 
iHik?>kfiiiM.iei •»MIICZ 
1 Mil..-.l.jl ...   301 
k.ll,-,   olOl-.lOl 1/0381.   1. Z7S «««/aM 
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lMulc3-kflli"W 3«: 
ktn.i«r.Bii«?'iio:ii/o3PZi i. ^^s.»w/o^ll 
«wllcS^'Vtlti»«  l,'3'»ullc3« 
(Mulc3»-k»UiiM WJ 
iitl«iM.im«ilN>l/smi !■ zzsew/oZii 

iHUUKMrlltlW.IM 
v»i«i»«(iio«'ii'»<ii/i>3B«i !■ zzswe/oJii 

t.H.«« <<l«-ilOSil/o3fl5i   !• ?Z5.W«/oZil 
l>il |il>ktlllW' 106-'M1 kS 
«wulcS-t«|li»« 306 
kiiiiM.«lw>ii*iil/*Mi I. zzs eoo/oZ:i 

k«lllW.*l*7«il«7i|/tW7i   I. ?Z5.e««/c.2rl 
lullcK«>Wf II.M.I09>lHllc&t 
twulcBfttlt IM S^fl 
k«Hir.«.oine«il0e-l/63n8i   l>  ZZSWe/oJ'1 

k»|l i(M.olM«ilB9:1/0309:   1.  ZZSWW/oZ^l 
1MII<:69-V»HI«« lin^'MllcB» 
twUSs-tKlli"« 31« 
tilt... ollO'.im.l/oSl«'   I-  «».•»•/•«■I 
IMI lr6h-liU .»•   1M-<"1 IrBh 
luu)f6h.t..U .-.   311 
b«|lia«.«lll>illi<t/otlli   '•  r?S »W/o2M 
|ullc7*Vl|(iM. II{*(HI|C7 
luuic^-itit'M.si; 
»■((■■•••(('••iilil/itlZi l> zrsew/oz.i 
twllc7.-l.»Hi«« Il3-I"llc?» 

Iiwlc7a>kfl(iaf.lll 
k»Hi»«.oll3'.ll31|/o313>   I.  Z2%.*W/o2'\ 
txl If^'ktlliM. IK-fullcTt. 
lHulc7k*k»HiM.lH 
l.,M ... MM-ilMiWoJIV   I.  ?r5 eoo/o.M 
tul |(I>I>|||IM. llS-f-l h 8 
«MulcS-btll .M.3IS 
ktllin«lll'>ill>i/«llli 1- M».*»»/»M 
lHllcll>ktll>*•  IIB-'-ll' 13 
i.■jk i3.i,|i ...  316 
w»n.r»«.oii6"ii6a/o3i6: i. tn.M*'»I<i 
tullcl3fk»Hi««ll7'f-llcl3« 
IwlclScliltxM 317 
k«lti»€.oll7..117il/o3l'i   !• Zri.eM/oZl 
l..llcl3b-k»|t.««.118-1-1 Icl3h 
I «olcl3b-l.lt...  318 
.tHi»».oiH"iii>i/»3i«i i. ?rs.Me/o?ii 
bllt IM. lt*tf It IM 0? 
Hit IW.*>*tIll 

.W4. TS.eoo 
PbS. 7S one 

Iff It IM. ll"   0113 
kf it IM. it* oi:". 
k«itIM.ii« oi;ii 
ktlliM. il* olZZ< 
nl i tat. i?« ol23' 
k«M IM il« olZ^i 
tilt IM it» iini 

«55.  7S.«>0 

kilt .M 
ktl< IM 

blltiM 
k*ll >M 
ktlliM 

kill IM 

kllliM 

L.11.». 

l(a olCEi 
lZ. 01Z7: 
.«■ oirfli 
it* »i.'s 
It« ol30i 
it« ol31i 
it« «132< 
it« ol33i 

oss 
PSS 
»5S 
ess 
"SS 
"SB 
KS 

7*   00« 

kill IM. It« «I34i 
kllliM. it« ol3Si 
kvlliWi 

?j.00# 
7S 000 
7S 00« 
7S OOO 
rs.^oo 

096. H.*» 
»S6. 7S «00 

7S.0O0 
TSOO» 

os«. 7S eoe 
«SS. 7S M« 
0S6. ?5 000 
OSS.  7S 00« 

es6. 
0S6. 

.   i?» »136 
tHlle;-kt|tiM.119-'ullc2 
twultr-ktHiM  319 
VdliM sll9'ill9il/o3l9> 
t«llc3-l.«lliM 1ZI»-«M1IC3 

tMulc3-kiHiM 320 
^•I«IM.OI20*I170: l/e3Z0i 
IHI IC J*-li*|t IM  U1>'MI It 3« 
tmlcSckdtiM.Ul 
k«ltiaa-«ltt«>ltlil/*KI<  ■ 
«ullc3b-.liilliM.172>'ullc& 
tMuic3b>ki|tiM 127 

1.  225 »00/o3.l 

I.  22S«0«/o3il 

225 OOO'.l'l 
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. tn 

. m 

. in, 

. w 

.«M/o3'l 

IWO/oJi 1 

m 

tn.tM/d'l 

»uulc<-Wtl«>»« 323 
klingt.•in»ii«iirtirii i 
»uiics-mt.-t i.-^-'xiitS 

li,|li««.«»Miii:4iJ/oK«i I 
tMlU»*k»Hi«t.ll»»fMlUI 

tu)itSt*vii(i**'irs-iwiicSt 
l..ult6">-t«ll ■"€ 3C6 
ktM i«' olZt'ilIlil/»*?*1   ' 

> «v I c B'• !• t It i •• 32 7 

U.llc6s'k»lt ""•  UB-fwltcB« 

1 WIJ I c 6<)-11111 "• 3C8 
l,,|(.n,. OU9-.128  I'oSrS-   1 

»Mllelt»liiUn>t.U9*'»'lltl>1 

(«ulcBh-ltlt.«» 3:9 

ktni««.»ii»">r>'i'»»f*i i 
lu||c7*b«|t>M IW'fwIle' 
»UUlcr-fctlliM   33" 
l.,U,».,i)l30'.13'Vl/o33n^   I 

(wilt P«-t«|li««»  I31>(ullc7t 

Iwglc^i-lilM ""•  331 
|i,|l.«».olll'illM/oMli   1, Z?S «»«"03.1 

(Mulc7t»l'tltiM'33! . . 
l„M,.. nl32..13M/o33Z'   !■  2«.«««^3:1 

tMlkfl't-Ki«»  133-f-Ilte 

tuijI'-B'ViH "•• 333 
k.M.-» "133'.133 1/0333^   !■  Z2S M*/o3.1 

l»i||rl3«k«Ui»t.lH>'»ll«H 
twulcli'^tldM.IH 

twlli:n»-l«l«'"«  I35'<"n'-13» 

(uult I3»-I'ill'"« 335 

lullcllb-t«!»'»»  l3S-<"llcl3b 

(wj|rl3t<-Hlti"«  336 
k.lfM ,136..l36:l/o33S:   I.  2?S.«M/o3:| 

litll IM. rl«lfiltl«t.»l 

h«|t IM.«l>>|ll 

|r«||iaw.ll*    'I'l 

'   Lfcon   lock   lUftl 
(IkU'o-lMt»» M1HM» 

Ulttt J'MIVIMB 

H lf«i il"«  'Z'l  / oM  ' ,'', 

BM   .jlH»«9 out'J«'I"*-   »•1|1 

Sch«d  nonco««   Ik I»»» 

Coll«':«   no»««»   U !••» 

1  L»ic*"  '■''w   "■ Irt«« I 
»lWlr»«< 1-IHr»«* I   1-tlHp««« 1 

Ik Irt««  IZ-ulUr»«» 1 

lHe««a 1   il"    '■I   ' o1'1  /  ',l1 

«It ulklr««» I au«u« I**' «It 

Sth«d  nonco«   lHp«»9   I 

Coll»cl   not>»<   lk '•*••  ' 

'   L«''con  lock   H(p»»» Z 

finrf»? :-IHP.»< r I-UHP.«« Z 

nipti« :..i" 'Z'i ' »>•' ' ',,, 

«M   ulklP»«!  J   qu»u«il"*-   «»I'I 

Sr>«4  nnnio«   lklpm«9  t 

Coll«"   no«!«'    UlP»««  Z 

'   L«.'CO"   lork   IH"»"   I 

dkl—n  MM»«"  1  l-tlH«'"  I 

Ik \m-r<   1   r-ulkl-.n   1 

|k|>.n   l.il««   'M   ' »I'1   '   ^   ' 
BM   ulk I»»"   I   •!•«•'!••■   »«I'l 

S'.had  nonco«   Ikl»'"   I 

Coll«cl   no«(«l    IH"«"   I 

1    (.».'ton    locW    lk|»"n   Z 

rivinoi j'ino'n riMiki««« z 
iki»-n e.j-uin«'"' z 
lkl«..n   ril«»   '^'1   '  Ol'l   '   'll1 

MM  ulU"""1 Z <»u«u«ilM'  »olil 
Sch«d  nonco«   IH"""  Z 

Coll«ct   noil»»   lH«»n  Z 

<    L«»iC0n    lock    Ikjphon 

nHp»ion-lHphOO   (»tlklf*»" 

Ik (phon.J-ulk (»►wn 

lUphon   ll««   iZ'l   /Olli   /   'I'l 

Bit   ulklpho"   I»U«U«'1M>.   vol'l 

Sch«d   nonco«   lUphon 

Coll«cl  no«l»t   Ik Iptwn 

1   l«»iCon   lock   Iklfurn 

»Ik|»urfIk|«urn.1*tiki«urn 

Ik |furn.2-ulk l«u"i 

IHpurfi.ll«»  i?il  / fl1'   '  ll'1 

Bit   ulklfurn   quounl?0'   vol'l 

Schrd nonco»   IV(»urn 

CsttlC*   no»t»l   lH«urn 

'   Lt'iccn   lock   lllurdsu'o 
flkl^d.'jrr..lH«rd.ur"   1-UklMrd.urn 

Ik IM. d»uro.2-ulk |urd«'jrn 

Iklurdmurn    l|««    'J'l    /   ol'l    /   'III 

Btt   ulHurd«'J'0   ^«u«   I«*),   vol'l 

Sch«d   oonco»   Iklurdf'jro 

Coll«ct    no«I«I    Iklurd.urn 

•    l«"iCOn    lock    Ikjword 
Mklwcrd-lkluord   l-tlkl«Kird 

Ik Itmrd   T'ulk luord 

lk|..ord   ll««   'M   '  »I'1   '   '•', 

Bit   ulUword  llu«u«'IPO.   «ol'l 
Sch«d nonco»   IklMOri* 

ColUct   no«lit   Ik luorH 

I   L«>"On    Inck    Iklthd^rd 
f 1 kl «hd«nr d-I k I f^*"!'d   1 • 11H »Muor d 

Ik llMuord   ?-ulk Ifhduord 

lklfhduord'1'«    llll    /    Ol'l    /    '111 

Bit   ulklf^duord  1U»'J«'I"*'   «ol'l 

5ch«d  nonro*   lk|«Kdwn'd 

Coll«Cl    no»l«l    lk|fhd>«ird 

i   L««icon   lock   lkl«M»«nt 
•    »lHfhd««"flH«t'<*..nt    l-tlk|»hdl«nt 

lkl«hd»»nt   ?-ulH«hd»«nt 

lH«M««nt    'I   •   '?   I   /  Ol'l   /   Uli 
Btt   ulk!«Kd«»nl   »nu«   lOO-   vol'l 

Sch«d  nonco»   Ik HM««nt 

ColUct   no»t»l   lHf>id«»n< 

'   Cl      Mord'wdlurn 

fullcl'xltl   1-t-llcl 

MUC1.1**MU1C1 
tlklMrd«u'n.ulcl   :>'lkl-rd»u'n 

ulk lMrd«urn*wucl    Z 

||t (urrd—I'l    J*'IH"oH 

ulk lunrd-u-jrl   J .   , 
„Id    '1-oM/   'M'  •»'«'   ''   "  '''"   ',', 

wucl   'l»«oZ'W o3'W   'II 

Bllnbut«  vHkll«lo  Ou«u«'   ZT*-   Wcl'J"«: 

Btlr.but«   vklktlc«   Ou«-«'    ZV).   Uolu-' 

Bttr.but«   vk|k.lP«vn   »'«u«     TM-   «olu«.' 

Bttr.but«   vklk.lM««   flu«"«      tia.   *!•" 

B1tr.k«1«   vklkflf»«  ÖU.U«'   ZV)-   Wolu««' 

Bllr.but«  vklk.ll.« «Ki'u«.   :&•■  Wolu*' 

Bllr.bul«   vklktlu'k-  9u«"«     'W-   Wolu««' 

Btlr.but»   vklktIUV ».»u«     !!••   Wolu-»' 

Bllr.but»   TOmiBlO   ((..••<•'    .-W.   Wolu»»' 

BHr.but«   tO»*f|PSC  Ou«u«    ?».   Wolu«»' 

BUnbul»  tOP»tl',S»N Ou»u»'   7SB.  Wolv.«»' 

».   D«l»r< 

•.   0«l»r> 

«    D.l«> 

*.   0«l«. 

«.  D«l«v 

t.  0«Ur' 

*.  0«l«r' 

t.   0«1«. 

fi    D«l»r' 

I».   0«l»r' 

«. Dtlari 

W«.   SlBTluP: 

»OS    Sir ur 

MM.   Sl«rtuP' 

(WO.   SlprtuP 

WW.   5l«rluP' 

W«.   Sl^rtu» 

M*     SHrlup: 

«no     Startup' 

•M.   SI«rluP' 

•M.   Sl»rtuP 
tM   StBrtup. 

(X» 

BM 
»oo 
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• llnbut*   lOPniW«   0.j»u«i   5«».   Volu»»i        ».   D«l*pi        .«».   Jt»rlu»i 
MMribul*   IWPCIStG »jtg«!   .'SB.   Uolu«. «.   D»l,y, aM.   Slarlupi       .1 
Attribut«   TOPPCITU1S »Jtuli   {ft-   Vnluxi       0.  D»l«^ «06.   Stirtupi 
tepx Mlcp«t».ulc«.n.ulc7.ulc3.ule<.i<lt5.ult6.-lc7.HlcB.MlcS.MlcU i  «Id 
COPK   "ucp««l.uuci«-n.tiuc?.uuc].'iuc4.uucS.>iuct.uuc7.uuct.»ic9.uuct(  i   uucl 
COPK Mlctl.wUII'wlcll.wlcH>Hltt««.ult|4h>Hlclte'aiUllb>iilclIl i ulcl 
copy tiuclt .iiucl7.uucl3.uucl1.HucMi.uucMb.uucl]*.M>cl3t<.Hucl2i  ■ MKI 

cop» ulttlf.iilclZ(>Ht(IA<<ulcll«.Ml(llb-HlclliiHl(lir.alell| ■■ uM 
Copy   HUCl{f •HUCltt't<Utl9*'UVtlltiHUCllbiHH(il«.MMllfl«VC|||   '   WCl 
copy iilc)lh,i<lcl»a.Hlcl0b.ulr9*.ulc9(.ulc9«,ulc9h.Hlc7«,Hlc'b i  MICI 

copy Mucllh.wjcl<>».wcieb.uut9«.Muc9».Muc9».uuc9h.Mut7i.i«ic?W i MUCI 

copr uU6«.Hlc6r.ulcE«.ukSh.ulc3t.ulc3b I  -lei 
copy HucBv.uucSf uucB^.KucSh.HucIi.Muclb i wcl 
»r h«rt  npnconr«!«  utcl.Mtfd 
toll   fio»'»(  xlcluucl 

'   <:r>*9 pit? Z •  pits 1 
fwl Icptvs'Hicpf*?. 1 -n-l (cpf«9 
wucpftt. I'tmjkPffS 
tlUp»»»   t'ulcp»9.?>rilr|p>li   I 
uUtr^rq   1*MI)CP««9.2 

llUp.t? Z-Nlrpi«s.3.»|HP,«s 2 
ulVlr«»a  ?-ui;cpf»j.3 
■cH*d  rtnnconpatt Mlcpt*9>Hucptt9 
collect   notttt   Hlcpfl«3.uucpc»9 

• CW'H   w.n   Z   •   *.n    1 
fwl Icmrn^ulcnvn. |*(u) |c«vn 
wijCÄxn. i*tw(jlc«''n 
tlMm-n   l>ulci>>n  ;>f|l|ai>n   | 
ult' Iwn   ItMiicm'n.? 
t)i.ir..n ;>uic«i'n.3>rii>i«'n ! 
ultI».n   2*wuclft'n.3 
frh»»J  nonconpf*«  MlcMvn.HUCMfn 
cnllvct   nostst   Mlcnvn.MurKvn 

* C*   CI   •   •urn 
<uiic;>uic;.i-tuiic? 
MUCZ. l-tmjfe? 
tlkUurn.ulcr.J'lUliurr 
uU Ifurn'MucT-Z 
lHllel«HlcZ.I*rHllel 
t™lc|.Muc: 3 
•Cbffd  noncoaptt«   wltT.wuCt 
collict  nmtal  U1(7.HUC2 

1  c3 Mord • e7 
lu] Ic3'ulc3 UtHllel 
"uc3  1»IMUIC3 

Iul|c7>u|t|.2>fullc' 
IUUIC7-MUC3.7 

IU|u«r4>ulel 3>'IVIuard 
u IV iMor d»M»JC 3. 3 
»rh«d  roincnap«!«  vll.uutl 
collffrt   notttt   MICA.UUCS 

'    e4   Mrd»urrt   «   r9 
'..11    <■.,!   <   I'lullc« 
wuc«. !•tMulc4 
lul.cS'ulc« 2-(H1ICI 

1*iulc0>wuc4 2 
t Ik lurd«urn.u)c<   3-( lit lur d«ur X 
uU lurdsurn>Muc4   3 
ftchvd  «oncowc*»»  wlc4.Mur4 
COlltCl    "Ottlt   ulc<   WC4 

'   cS  ►* dlurn   •   torn 
'ullcS-.uleS  IOMIICS 

w«jr S    I • Iwu IcS 
t II Iturti.wlcS ?«f|k|Mr« 
U Ik  I »'iC «-MUt5    2 
tU lurdcurn-xUS   kfll lirdtu'" 
wU IMT d«u'n*Muc5   3 
■cH#d noncoapvt« wUfc-wuct 
nllWl   nettat   alc&.MUtS 

'  c6 cB •  .1? 
fullc6>»lc6.IMullcS 
MUC6.1* tnuIc6 
lMl|cll>Hlt|.I*fHll(ll 
tMulcl?'HUC6    ? 
l.,l|eB-Klc6.3-<MllcB 
tMulcB*uuc6.3 
•cH»d noncompttt W1C6.»HJC6 

cnlUc«   noittl   "IrB.xjre 

'  r7 »urn  ♦  clB 
fulk7-ulc7.1.tMl|c7 
wuc7. I*tuulc7 
lulklB'wlcP.rWullclB 
tMUIc'O'WUC?.? 
i u l«urn*ulc7.l*Mh|«urii 
uV l»i *n*Muc7. 3 
fcf->ed    incompett H1C7.MUC7 

collvct   noilut  M1C7.MUC7 

1   cB »urn  ♦  phon 
<..ll'B-i,lrB   l-l"llrB 
wucB. UtiiulcB 
tlUphpn-ulcB Z'MH^icn 
ult Iphpn-.uucB? 
t It l»urn>ulcB  3>'UI«urn 
uU lturn»Huc9< 3 
«rh«d noncomptl« ulcB.uucB 
CPlltCt    nn»*»'    ulrB.WlcB 

1   c9 phpn   »   cl2 
i..I |cl>HleS. ■•tullcB 
uuc9.l-twu:c9 
tullcl?  ..Ic9.2-fullc:tr 
tuu Ic 1 T- um 9 7 
til. Iphcin>ulc9 3-.(lllphpn 
ulW|phpn»wuc9.3 
»ch»d npncoMPttt  M1C9.MUC9 

coll.   I   no»tat M1C9.UUC9 

'   tie ohnn  ♦  cm*n 
I..I I. 1W...1.  1«    1.1-1 I. 10 
UUClBlOMUltlO 
Iwl ki"»n-ulclB.2-fMl lc»»n 
twulc«yn>MijclB.2 
tll.|phnn.u|cie.3-flHpN)n 
u It lp*^on*Mucl6. 3 
»cK«d  noncompBt»  ulclBtUUcli 
collvct   np»t»t   ulclB.MuclB 

'  ell  c«>n  • cM 
f«llctUulell.t>tHl|cll 
MUC11     l*tMUlclt 
IM1UM>MUII  2>'ullcl4 
IUUUM-MKII.7 

tnuIcw-n^MuC11.3 
»ch«d nonco"P»l»  ulcll'Uucll 
CPllttt  no»t*t   ulcll.uucll 

1    r|2   CP-n    •    CP»»« 
fwllcl2-uli:l2 I'tulldZ 
MUCI;  l>lHuUtZ 
t"l 'cp»»9>u|clt   ?>'ul kp»ti 
ti*i kr»«9*uijc 12 2 
lullcMfl'ulelf  3>(Hlkawn 
tt#jlc»-n'*<uc!2   3 
ffc^vd   noncOPptt»   M1C12.UUCI2 

col|«r1   no«t»t   wlel2.uucl2 

1   rI 3 pHp"   •  cp»»9 
(..Ilcl3-u)ct3  I-IMIICII 

MMC 13 I'luukl3 
Uil ICP«»9>M1C 13 2*fwlkp»»f 
t*«u irp»v9*Mut 13 2 
I |l iphpn.Mlc 13   3-llHt*»"' 
uU lp*ipn*uuc 13   3 
»c»^d  npncoapttl  "lrl3  •*tl3 
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colltrt  not'!'  M1C13'X'JC'.3 

i  eH cpus '  »tj 
«nllcM'ulcH  MullcM 
wicM. i- iwui. M 
ill li»s-ulcM?-flk|«»li 
uU I t*g>uucM   '" 
lul |cpt»?'wlcM. 3'<M1 ICPM» 

twuIcrtt9*wucl4.3 
fcK»d  noftcomp«*»  M1C14>WUCM 

rolltet   noit«!   iilc|4.uucl4 

1   cMt  P<l«   I   *   «9 
fullcH»-«lcM» 1-lullcMi 
wurMi  I'tuult Mt 
(11 lMt»MleH»-?*'lHtM 
ull Im-wcHtZ 
tltlPtt» l-ulcMt S'Uklptts 1 
uIMpfts  l»«u«t<i-l 
tcKtd  ooncompt*»  MlcHt'MJCMi 
colltt«   notttl   ulcMtuucHt 

1  cHb pttq ? •  »ti 
fulUMb-ulcMb I'lullcHb 
uucMb. UtHulcMh 
lit ll.a-ulcMb.r-UHt»? 
uU If t9*iAJcHb'? 
«IVlPft? :.ulfMb.3-flHptM z 
uH Ip»f9 r*Muc Mb. 3 

'    »th»d  nonco»P«lt   ulcMb.MUCMb 
cnlltct  nottti  ukMb.uucMb 

1   Cl3t  phen   '   Ht9   1 
fwl UI3t>ulcl3t Mtwllcllt 
uucl3t  l-tu'jlr I3t 
• |b|pt<<i l>>.lr|3t Z-nviPf«« I 
uU |P>«9   |-»'jr|3l   r 
« U lpH(.r.MU13t. 3-nk Iphon 
ulW tphpn-wycI3t   3 
m    '—I   noncompttt   wlr13t'MUC13t 
CnlltCl    notttt    ulcl3txucl3t 

'   cl3b  pbo"   •   Pit»  ! 
lul Icl3b>xlcl3b   i-t-l Ir I*. 
.,    ris   i-'..,!, nt 
llHrit? Z-i..lcl3b J-nnptt» 2 
uU lr"»9 T'-wuc 13b C 
(lHphrn.ulcl3b 3'<1HP>XP'< 

ull Ipt-on^tiuc 13b   3 
«rhtd   r>nnr.P*pttt   M 1 C I 3b ■ «^J' 1 3b 
tolltrt   "cUtt   »It I3b>«jt 13b 

1  rlTt •»"  t  ♦ P'ti 1 
»ullcirfulcltt  l-'xllclZt 
mttXt*  IMmlcirt 
lUlr*t( l>wl;l2t :-<ll |p*t( I 
ulbIrtt«  1*MUCiTt T 
t III»»  MHUIN 3->ln.."  I 
ulk IBM   l-MUClTt   3 
tft.«d   nonCO»Pttt   MIC ITt-»UC l?t 
Ctlllft   nctltl   ultirt.uuelit 

■ t \:i ••'> i • pft» i 
<..iituf-Mitir' i.i»iiti?' 
mitMl   l-luultl?' 
(IklPfc^  ?-».ltl'«   r-MHp«»9  " 
,.k i «■ i-Mutir* r 

UM-" i—iti:» 3'»inf» i 
ulkla-n   |>W(<|7I   3 
SCK«4 r..»'^'»«f*t»t witit' *^tir' 
C'llf'    »««'t'    ultl?'   »wcl?' 

■ ci?« •■" r • »»•» t 
IMIICI7V>ICI2« I-I»IICI7« 

xucITt   IMMUICI?« 

tlilrtt« l>MltU« i'UHp—l  I 
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uU lr»-n   2>HUI l?9   3 
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ColllCl   ntittll   ultllt.uut lit 
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luulcM-uurl lb  ? 
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ull |>..n   l-uut I 1)3 
.    •..    ••        •-i»!«    ultlHuutll' 
trllttt   .•■">•   uli ll>   uuctK 

'   -(19  ••',   »   '   '<*• 
»ulltllf-lt 11«   l-<ulkll9 
«j. II«   |.«-.l' 11» 
(-lit Mfult 119  r-'xllll«» 
tuult Mfuut I 1«  ? 
t|t la.n   r-»lr 119   3-'U I«""   r 
,jll lawn   r.uijr lit   3 
tr^td  "OTiapt't  ult 119 "'ell* 
tnllt':•   "Off   ul'l^"''!'» 

, Hh  a.n   r   •   r l>b 
«..1 IcIIH-alcllh   l-l-llrll»« 
iaKll*>. |-i>«.lcllh 
l,.l   - l«b »li lib  :-<-llcMb 

.    tuult Mb>i~t ll>i   I 
(|l la,.    .--..Itllb   J.t   kla.«   2 
ulk la.»   r-aullth   3 
(Ih«d "nntracttt  »Itllb   ^itllh 
tolltt)   -i-««t«   »If I l'--'«Jt lib 
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UM«™ l*ulet*t-Z>rib|Bir«i I 

tit Iphon-uit 10.   3-<|W)pt,on 

uU lpHen*uucl^*. 3 
•chtd noncaart)*  ulcIA> uuclga 
coll»,(  ftotl«!  U1CI9«,HUCIS« 

I   clPb phon  ♦   i»n Z 
IMI k lot-M.l, K* i-uiii, I* 

MUclOt. 1-luulrlOt- 

tlk Imm Z'HICII* 7WlH«,n 2 

t It-jphon-ulcieb. 3-f U Iphon 
ult Iphpn.-HUclW'. J 
■ch*d noncoMpttt wlcl^b.Mucl^b 
«OlitCt   notttt   uldtb.MuclM) 

1   c9«  phon  «  clZl 
rMikOt^Htett' i-tHiic3« 
uuc9«.I»tuu)c9tt 
Ullel?t*HlcB«.2«(uileit« 
tuulclt»-Kuc9» 2 
llHphon.ulc9€.3Wlk|phon 
uIb|phon>uuc9*.3 
«cl'€d  nonconpttt Hlc9*.uuc9ft 
ccillfct  noftil  ulc9«,uuc9* 

1  c9< phon • clJ» 
fnl lc9f>ult9».|.tMl Ic9f 
Mut9(.(•luulclf 
«"llcl2f.Mlc9r.2>fMllcl2f 
»uulcl2f-uut9f.2 
t lHpticn.Mlc9f   3-f 1W jphoo 
ulklphon«uuc9(.3 
fcH«d  nonconpvtff  Mlc9f<wuc9f 
colltcl no»i«i  Mlc9f.uijc9f 

1  c9» p«on ♦ cl2§ 
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1   c3t word *  c7b 

f"lk3b-uk3h.klulk3b 
Muc3b. l»tMuk3b 
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tuuk7b-wuc3b.2 
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copy kalutblikalutb 
copy baluvt .I'aluv2^aluv3<l'iluv 

I   cTb  aurn   ♦  cIPb 
ful Ic7b-ulc7b. ktwl IcTb 
wuc^b- IMuulcTb 
tulkl%>ulc7b.2*fMlkl9b 
»uulcl%-u.jc7b-2 
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collect   noatat   nlcTb.uucTb 
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APPENDIX C 

Validation of Simulation Results 

Both the Bliss/ll and Hearsay II examples of Chapter III relied on the -esults 

of statistics obtained through simulations. When using statistics, one must be prepared 

for the possibility of error. For simulation experi./ents, two validation factors are 

required to verify the significance of the results [Gordon 69].  These are: 

1. Elimination of initial bias. 

2. Development of a confidence interval. 

The method chosen for the elimination of initial bias was the use of trial runs 

to detjrmine simulation run times. Since many simulations were required for the 

Bliss/11 experiments, a small number of trial runs were used to estimate the simulation 

run times for all other runs. It was observed that the initial bias was eliminated after 

about fifty messages entered the RESULT process of the Bliss/11 model. The number 

of messages used in the experiments ranged from 475 to 850. In contrast with the 

Bliss/11 message number measure, the Hearsay II simulations were based on simulated 

time. It was observed that the Hearsay II results stabilized after about 5000 time 

units. Consequently, the amounts of time used for the emulation experiments ranged 

from 10,000 to 100,000 time units. Thus, following one of Gordon's recommendations 

[Gordon 69], the initial bias was eliminated from the experiments. 

The determination of confidfince intervals for all the simulations J/ould have 

required a relatively high overhead in the simulations. The standard techniques 

require either repetitions of a particular simulation using different random number 

generator seeds or, alternatively, one very long simulation run that is divided into a 
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set of batches. Considering the large number of Bliss/11 simulations that were 

performed, it was felt that the development of a confidence interval for one simulation 

would be used to represent the entire set of Bliss/11 simulations. Figure C-l shows 

the data taken from one long simulation run from the Bliss/11 simulation using six 

processors and FIFO scheduling. 

Stop No. F^ No. LS LEX Time Percent Thru 
Time Sends Sends Computing Thru Rate 

40 75 76 .238 89.3 3.75 
60 65 78 .239 77.7 3.25 
80 69 83 .241 83.1 3.45 
100 53 56 .355 94.1 2.65 
120 66 69 .226 74.5 3.30 
HO 58 50 .248 71.9 2.90 
160 58 62 .249 84.7 3.40 
180 79 74 .270 106.6 3.95 
200 82 79 .253 103.7 4.10 
220 68 85 .226 76.8 3.40 
240 64 67 .280 89.6 3.20 
260 74 80 .234 86.6 3.70 

Figure C-l. Bliss/11 FIFO 6 Processors Evaluation Data 

From these data, 907. confidence intervals were computed for the LEX 

Computing Time, [.245, .264]; Percent Thru, [84.6, 88.5]j and Thru Rate, [3.28, 3.57]. 

From the data shown in Chapter III, it can be seen that each of the values falls within 

these respective confidence intervals (i.e., .259, 88.3, and 3.28). 

Based on the validation of the numeric significance of this selected simulation, 

the other BIiss/U simulations are felt also to be valid. This seems reasonable since 

the various simulation rasults did not have any unusual patterns. 

The same general techniques were used to run the Hearsay II simulations as 

were used for the Bliss/11 simulations. As discussed earlier, the initial condition bias 

was eliminated by runni      the Hearsay II simulation for a long time.   Confidence 
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intervals were not established for the Hearsay II experiment, because the Hearsay II 

result was based on an accumulated statistic (i.e., average active processors) and the 

method used for validating this type of statistic required multiple runs [Gordon 69]. 

Since each Hears- ' II experimental run was relatively expensive (from 20 minutes to 1 

hour computer run time), this validation was not felt to be worth spending the required 

resources. Moreover, the Hearsay II simulation results were correspondences to 

Fennell's simulation experiments, vhich were also not validated [Fennell 75a}. 
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